![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resima | Structured version Visualization version GIF version |
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.) |
Ref | Expression |
---|---|
resima | ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | residm 5588 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
2 | 1 | rneqi 5507 | . 2 ⊢ ran ((𝐴 ↾ 𝐵) ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
3 | df-ima 5279 | . 2 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = ran ((𝐴 ↾ 𝐵) ↾ 𝐵) | |
4 | df-ima 5279 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
5 | 2, 3, 4 | 3eqtr4i 2792 | 1 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ran crn 5267 ↾ cres 5268 “ cima 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 |
This theorem is referenced by: isarep2 6139 f1imacnv 6314 foimacnv 6315 dffv2 6433 islindf4 20379 qtopres 21703 |
Copyright terms: Public domain | W3C validator |