Step | Hyp | Ref
| Expression |
1 | | eqid 2770 |
. 2
⊢
(Base‘𝑈) =
(Base‘𝑈) |
2 | | eqid 2770 |
. 2
⊢
(Base‘𝑇) =
(Base‘𝑇) |
3 | | eqid 2770 |
. 2
⊢
(+g‘𝑈) = (+g‘𝑈) |
4 | | eqid 2770 |
. 2
⊢
(+g‘𝑇) = (+g‘𝑇) |
5 | | resghm.u |
. . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑋) |
6 | 5 | subggrp 17804 |
. . 3
⊢ (𝑋 ∈ (SubGrp‘𝑆) → 𝑈 ∈ Grp) |
7 | 6 | adantl 467 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑈 ∈ Grp) |
8 | | ghmgrp2 17870 |
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) |
9 | 8 | adantr 466 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑇 ∈ Grp) |
10 | | eqid 2770 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
11 | 10, 2 | ghmf 17871 |
. . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
12 | 10 | subgss 17802 |
. . . 4
⊢ (𝑋 ∈ (SubGrp‘𝑆) → 𝑋 ⊆ (Base‘𝑆)) |
13 | | fssres 6210 |
. . . 4
⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
14 | 11, 12, 13 | syl2an 575 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
15 | 12 | adantl 467 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 ⊆ (Base‘𝑆)) |
16 | 5, 10 | ressbas2 16137 |
. . . . 5
⊢ (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈)) |
17 | 15, 16 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 = (Base‘𝑈)) |
18 | 17 | feq2d 6171 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇))) |
19 | 14, 18 | mpbid 222 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇)) |
20 | | eleq2 2838 |
. . . . . 6
⊢ (𝑋 = (Base‘𝑈) → (𝑎 ∈ 𝑋 ↔ 𝑎 ∈ (Base‘𝑈))) |
21 | | eleq2 2838 |
. . . . . 6
⊢ (𝑋 = (Base‘𝑈) → (𝑏 ∈ 𝑋 ↔ 𝑏 ∈ (Base‘𝑈))) |
22 | 20, 21 | anbi12d 608 |
. . . . 5
⊢ (𝑋 = (Base‘𝑈) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈)))) |
23 | 17, 22 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈)))) |
24 | 23 | biimpar 463 |
. . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) |
25 | | simpll 742 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
26 | 15 | sselda 3750 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑎 ∈ 𝑋) → 𝑎 ∈ (Base‘𝑆)) |
27 | 26 | adantrr 688 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑎 ∈ (Base‘𝑆)) |
28 | 15 | sselda 3750 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑏 ∈ 𝑋) → 𝑏 ∈ (Base‘𝑆)) |
29 | 28 | adantrl 687 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑏 ∈ (Base‘𝑆)) |
30 | | eqid 2770 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
31 | 10, 30, 4 | ghmlin 17872 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
32 | 25, 27, 29, 31 | syl3anc 1475 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝐹‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
33 | 5, 30 | ressplusg 16200 |
. . . . . . . 8
⊢ (𝑋 ∈ (SubGrp‘𝑆) →
(+g‘𝑆) =
(+g‘𝑈)) |
34 | 33 | ad2antlr 698 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (+g‘𝑆) = (+g‘𝑈)) |
35 | 34 | oveqd 6809 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(+g‘𝑆)𝑏) = (𝑎(+g‘𝑈)𝑏)) |
36 | 35 | fveq2d 6336 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏))) |
37 | 30 | subgcl 17811 |
. . . . . . . 8
⊢ ((𝑋 ∈ (SubGrp‘𝑆) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎(+g‘𝑆)𝑏) ∈ 𝑋) |
38 | 37 | 3expb 1112 |
. . . . . . 7
⊢ ((𝑋 ∈ (SubGrp‘𝑆) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝑋) |
39 | 38 | adantll 685 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝑋) |
40 | | fvres 6348 |
. . . . . 6
⊢ ((𝑎(+g‘𝑆)𝑏) ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑆)𝑏)) = (𝐹‘(𝑎(+g‘𝑆)𝑏))) |
41 | 39, 40 | syl 17 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑆)𝑏)) = (𝐹‘(𝑎(+g‘𝑆)𝑏))) |
42 | 36, 41 | eqtr3d 2806 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏)) = (𝐹‘(𝑎(+g‘𝑆)𝑏))) |
43 | | fvres 6348 |
. . . . . 6
⊢ (𝑎 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑎) = (𝐹‘𝑎)) |
44 | | fvres 6348 |
. . . . . 6
⊢ (𝑏 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑏) = (𝐹‘𝑏)) |
45 | 43, 44 | oveqan12d 6811 |
. . . . 5
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
46 | 45 | adantl 467 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
47 | 32, 42, 46 | 3eqtr4d 2814 |
. . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏)) = (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏))) |
48 | 24, 47 | syldan 571 |
. 2
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏)) = (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏))) |
49 | 1, 2, 3, 4, 7, 9, 19, 48 | isghmd 17876 |
1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |