![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resfvresima | Structured version Visualization version GIF version |
Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
resfvresima.f | ⊢ (𝜑 → Fun 𝐹) |
resfvresima.s | ⊢ (𝜑 → 𝑆 ⊆ dom 𝐹) |
resfvresima.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Ref | Expression |
---|---|
resfvresima | ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = (𝐻‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resfvresima.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
2 | fvres 6245 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → ((𝐹 ↾ 𝑆)‘𝑋) = (𝐹‘𝑋)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑆)‘𝑋) = (𝐹‘𝑋)) |
4 | 3 | fveq2d 6233 | . 2 ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = ((𝐻 ↾ (𝐹 “ 𝑆))‘(𝐹‘𝑋))) |
5 | resfvresima.f | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
6 | resfvresima.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ dom 𝐹) | |
7 | 5, 6 | jca 553 | . . . 4 ⊢ (𝜑 → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
8 | funfvima2 6533 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
9 | 7, 1, 8 | sylc 65 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
10 | fvres 6245 | . . 3 ⊢ ((𝐹‘𝑋) ∈ (𝐹 “ 𝑆) → ((𝐻 ↾ (𝐹 “ 𝑆))‘(𝐹‘𝑋)) = (𝐻‘(𝐹‘𝑋))) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘(𝐹‘𝑋)) = (𝐻‘(𝐹‘𝑋))) |
12 | 4, 11 | eqtrd 2685 | 1 ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = (𝐻‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 dom cdm 5143 ↾ cres 5145 “ cima 5146 Fun wfun 5920 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 |
This theorem is referenced by: wlkres 26623 |
Copyright terms: Public domain | W3C validator |