MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfsupp Structured version   Visualization version   GIF version

Theorem resfsupp 8456
Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.)
Hypotheses
Ref Expression
resfsupp.b (𝜑 → (dom 𝐹𝐵) ∈ Fin)
resfsupp.e (𝜑𝐹𝑊)
resfsupp.f (𝜑 → Fun 𝐹)
resfsupp.g (𝜑𝐺 = (𝐹𝐵))
resfsupp.s (𝜑𝐺 finSupp 𝑍)
resfsupp.z (𝜑𝑍𝑉)
Assertion
Ref Expression
resfsupp (𝜑𝐹 finSupp 𝑍)

Proof of Theorem resfsupp
StepHypRef Expression
1 resfsupp.b . . 3 (𝜑 → (dom 𝐹𝐵) ∈ Fin)
2 resfsupp.e . . 3 (𝜑𝐹𝑊)
3 resfsupp.g . . 3 (𝜑𝐺 = (𝐹𝐵))
4 resfsupp.s . . . 4 (𝜑𝐺 finSupp 𝑍)
54fsuppimpd 8436 . . 3 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
6 resfsupp.z . . 3 (𝜑𝑍𝑉)
71, 2, 3, 5, 6ressuppfi 8455 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
8 resfsupp.f . . 3 (𝜑 → Fun 𝐹)
9 funisfsupp 8434 . . 3 ((Fun 𝐹𝐹𝑊𝑍𝑉) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
108, 2, 6, 9syl3anc 1474 . 2 (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
117, 10mpbird 247 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1629  wcel 2143  cdif 3717   class class class wbr 4783  dom cdm 5248  cres 5250  Fun wfun 6024  (class class class)co 6791   supp csupp 7444  Fincfn 8107   finSupp cfsupp 8429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-ral 3064  df-rex 3065  df-reu 3066  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-int 4609  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-oadd 7715  df-er 7894  df-en 8108  df-fin 8111  df-fsupp 8430
This theorem is referenced by:  lincext2  42769
  Copyright terms: Public domain W3C validator