![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resfsupp | Structured version Visualization version GIF version |
Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.) |
Ref | Expression |
---|---|
resfsupp.b | ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) |
resfsupp.e | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
resfsupp.f | ⊢ (𝜑 → Fun 𝐹) |
resfsupp.g | ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) |
resfsupp.s | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
resfsupp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
resfsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resfsupp.b | . . 3 ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) | |
2 | resfsupp.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
3 | resfsupp.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) | |
4 | resfsupp.s | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
5 | 4 | fsuppimpd 8436 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) |
6 | resfsupp.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
7 | 1, 2, 3, 5, 6 | ressuppfi 8455 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
8 | resfsupp.f | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
9 | funisfsupp 8434 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
10 | 8, 2, 6, 9 | syl3anc 1474 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
11 | 7, 10 | mpbird 247 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1629 ∈ wcel 2143 ∖ cdif 3717 class class class wbr 4783 dom cdm 5248 ↾ cres 5250 Fun wfun 6024 (class class class)co 6791 supp csupp 7444 Fincfn 8107 finSupp cfsupp 8429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-ral 3064 df-rex 3065 df-reu 3066 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-int 4609 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-supp 7445 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-oadd 7715 df-er 7894 df-en 8108 df-fin 8111 df-fsupp 8430 |
This theorem is referenced by: lincext2 42769 |
Copyright terms: Public domain | W3C validator |