Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfnfinfin Structured version   Visualization version   GIF version

Theorem resfnfinfin 8287
 Description: The restriction of a function by a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.)
Assertion
Ref Expression
resfnfinfin ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) ∈ Fin)

Proof of Theorem resfnfinfin
StepHypRef Expression
1 fnrel 6027 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
21adantr 480 . . 3 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → Rel 𝐹)
3 resindm 5479 . . . 4 (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
43eqcomd 2657 . . 3 (Rel 𝐹 → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
52, 4syl 17 . 2 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
6 fnfun 6026 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
7 funfn 5956 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
86, 7sylib 208 . . . 4 (𝐹 Fn 𝐴𝐹 Fn dom 𝐹)
9 fnresin2 6044 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹))
10 infi 8225 . . . . . 6 (𝐵 ∈ Fin → (𝐵 ∩ dom 𝐹) ∈ Fin)
11 fnfi 8279 . . . . . 6 (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ (𝐵 ∩ dom 𝐹) ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
1210, 11sylan2 490 . . . . 5 (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
1312ex 449 . . . 4 ((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin))
148, 9, 133syl 18 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin))
1514imp 444 . 2 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
165, 15eqeltrd 2730 1 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ∩ cin 3606  dom cdm 5143   ↾ cres 5145  Rel wrel 5148  Fun wfun 5920   Fn wfn 5921  Fincfn 7997 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001 This theorem is referenced by:  residfi  8288
 Copyright terms: Public domain W3C validator