![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resfifsupp | Structured version Visualization version GIF version |
Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.) |
Ref | Expression |
---|---|
resfifsupp.f | ⊢ (𝜑 → Fun 𝐹) |
resfifsupp.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
resfifsupp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
resfifsupp | ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resfifsupp.f | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
2 | funrel 6066 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐹) |
4 | resindm 5602 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) |
6 | funfn 6079 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
7 | 1, 6 | sylib 208 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
8 | fnresin2 6167 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) |
10 | resfifsupp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
11 | infi 8349 | . . . 4 ⊢ (𝑋 ∈ Fin → (𝑋 ∩ dom 𝐹) ∈ Fin) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 ∩ dom 𝐹) ∈ Fin) |
13 | resfifsupp.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
14 | 9, 12, 13 | fndmfifsupp 8453 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) finSupp 𝑍) |
15 | 5, 14 | eqbrtrrd 4828 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∩ cin 3714 class class class wbr 4804 dom cdm 5266 ↾ cres 5268 Rel wrel 5271 Fun wfun 6043 Fn wfn 6044 Fincfn 8121 finSupp cfsupp 8440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-supp 7464 df-er 7911 df-en 8122 df-fin 8125 df-fsupp 8441 |
This theorem is referenced by: xrge0tsmsd 30094 |
Copyright terms: Public domain | W3C validator |