Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resexd Structured version   Visualization version   GIF version

Theorem resexd 39842
Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
resexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
resexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem resexd
StepHypRef Expression
1 resexd.1 . 2 (𝜑𝐴𝑉)
2 resexg 5583 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2145  Vcvv 3351  cres 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-in 3730  df-ss 3737  df-res 5261
This theorem is referenced by:  limsupresre  40446  limsupresico  40450  limsupresuz  40453  limsupres  40455  limsupresxr  40516  liminfresxr  40517  liminfresico  40521  liminfresre  40529  liminfresuz  40534
  Copyright terms: Public domain W3C validator