![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version |
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | reseq1d 5550 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | reseq2d 5551 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
5 | 2, 4 | eqtrd 2794 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ↾ cres 5268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-opab 4865 df-xp 5272 df-res 5278 |
This theorem is referenced by: tfrlem3a 7643 oieq1 8584 oieq2 8585 ackbij2lem3 9275 setsvalg 16109 resfval 16773 resfval2 16774 resf2nd 16776 lubfval 17199 glbfval 17212 dpjfval 18674 psrval 19584 znval 20105 prdsdsf 22393 prdsxmet 22395 imasdsf1olem 22399 xpsxmetlem 22405 xpsmet 22408 isxms 22473 isms 22475 setsxms 22505 setsms 22506 ressxms 22551 ressms 22552 prdsxmslem2 22555 iscms 23362 cmsss 23367 minveclem3a 23418 dvcmulf 23927 efcvx 24422 issubgr 26383 ispth 26850 clwlknf1oclwwlkn 27249 eucrct2eupth 27418 padct 29827 isrrext 30374 csbwrecsg 33502 prdsbnd2 33925 cnpwstotbnd 33927 ldualset 34933 dvmptresicc 40655 itgcoscmulx 40706 fourierdlem73 40917 sge0fodjrnlem 41154 vonval 41278 dfateq12d 41733 rngchomrnghmresALTV 42524 fdivval 42861 |
Copyright terms: Public domain | W3C validator |