Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Structured version   Visualization version   GIF version

Theorem resdm 5582
 Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3773 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 5578 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 671 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ⊆ wss 3723  dom cdm 5249   ↾ cres 5251  Rel wrel 5254 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-xp 5255  df-rel 5256  df-dm 5259  df-res 5261 This theorem is referenced by:  resindm  5585  resdm2  5768  relresfld  5806  fnex  6625  dftpos2  7521  tfrlem11  7637  tfrlem15  7641  tfrlem16  7642  pmresg  8037  domss2  8275  axdc3lem4  9477  gruima  9826  funresdm1  29754  bnj1321  31433  funsseq  32004  nosupbnd2lem1  32198  nosupbnd2  32199  noetalem2  32201  noetalem3  32202  alrmomodm  34466  relbrcoss  34538  seff  39034  sblpnf  39035
 Copyright terms: Public domain W3C validator