Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resconn Structured version   Visualization version   GIF version

Theorem resconn 31556
 Description: A subset of ℝ is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypothesis
Ref Expression
resconn.1 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
Assertion
Ref Expression
resconn (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))

Proof of Theorem resconn
Dummy variables 𝑡 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconnpconn 31537 . . 3 (𝐽 ∈ SConn → 𝐽 ∈ PConn)
2 pconnconn 31541 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
31, 2syl 17 . 2 (𝐽 ∈ SConn → 𝐽 ∈ Conn)
4 eqid 2760 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5 eqid 2760 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
64, 5rerest 22828 . . . . . 6 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
7 resconn.1 . . . . . 6 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
86, 7syl6eqr 2812 . . . . 5 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
98adantr 472 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) = 𝐽)
10 simpl 474 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℝ)
11 ax-resscn 10205 . . . . . 6 ℝ ⊆ ℂ
1210, 11syl6ss 3756 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐴 ⊆ ℂ)
13 df-3an 1074 . . . . . 6 ((𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1)) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1)))
14 oveq2 6822 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑡 · 𝑧) = (𝑡 · 𝑥))
15 oveq2 6822 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑦))
1614, 15oveqan12d 6833 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
1716eleq1d 2824 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
1817ralbidv 3124 . . . . . . . . 9 ((𝑧 = 𝑥𝑤 = 𝑦) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴))
19 oveq2 6822 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑡 · 𝑧) = (𝑡 · 𝑦))
20 oveq2 6822 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((1 − 𝑡) · 𝑤) = ((1 − 𝑡) · 𝑥))
2119, 20oveqan12d 6833 . . . . . . . . . . 11 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
2221eleq1d 2824 . . . . . . . . . 10 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
2322ralbidv 3124 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑧) + ((1 − 𝑡) · 𝑤)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
24 unitssre 12532 . . . . . . . . . . . . . . . . 17 (0[,]1) ⊆ ℝ
2524, 11sstri 3753 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℂ
26 simpr 479 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
2725, 26sseldi 3742 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
2812adantr 472 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐴 ⊆ ℂ)
29 simpr2 1236 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦𝐴)
3028, 29sseldd 3745 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦 ∈ ℂ)
3130adantr 472 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
3227, 31mulcld 10272 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (𝑠 · 𝑦) ∈ ℂ)
33 ax-1cn 10206 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
34 subcl 10492 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
3533, 27, 34sylancr 698 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
36 simpr1 1234 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥𝐴)
3728, 36sseldd 3745 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥 ∈ ℂ)
3837adantr 472 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
3935, 38mulcld 10272 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 𝑥) ∈ ℂ)
4032, 39addcomd 10450 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
41 nncan 10522 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − (1 − 𝑠)) = 𝑠)
4233, 27, 41sylancr 698 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − (1 − 𝑠)) = 𝑠)
4342oveq1d 6829 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((1 − (1 − 𝑠)) · 𝑦) = (𝑠 · 𝑦))
4443oveq2d 6830 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) = (((1 − 𝑠) · 𝑥) + (𝑠 · 𝑦)))
4540, 44eqtr4d 2797 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
46 iirev 22949 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) → (1 − 𝑠) ∈ (0[,]1))
4746adantl 473 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ (0[,]1))
487eleq1i 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ Conn ↔ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn)
49 reconn 22852 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5048, 49syl5bb 272 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
5150biimpa 502 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5251r19.21bi 3070 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
5352r19.21bi 3070 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
5453anasss 682 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
55543adantr3 1177 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥[,]𝑦) ⊆ 𝐴)
5655adantr 472 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑥[,]𝑦) ⊆ 𝐴)
57 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
5824, 57sseldi 3742 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
59 simplll 815 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ⊆ ℝ)
6036adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝐴)
6159, 60sseldd 3745 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
6258, 61remulcld 10282 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ∈ ℝ)
63 1re 10251 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
64 resubcl 10557 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
6563, 58, 64sylancr 698 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
6629adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦𝐴)
6759, 66sseldd 3745 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℝ)
6865, 67remulcld 10282 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ)
6962, 68readdcld 10281 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ)
7058recnd 10280 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
71 pncan3 10501 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑡 + (1 − 𝑡)) = 1)
7270, 33, 71sylancl 697 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 + (1 − 𝑡)) = 1)
7372oveq1d 6829 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = (1 · 𝑥))
7465recnd 10280 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
7537adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
7670, 74, 75adddird 10277 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑥) = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)))
7775mulid2d 10270 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑥) = 𝑥)
7873, 76, 773eqtr3d 2802 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) = 𝑥)
7965, 61remulcld 10282 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ∈ ℝ)
80 0re 10252 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
8180, 63elicc2i 12452 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8257, 81sylib 208 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
8382simp3d 1139 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
84 subge0 10753 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8563, 58, 84sylancr 698 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
8683, 85mpbird 247 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (1 − 𝑡))
87 simplr3 1265 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥𝑦)
8861, 67, 65, 86, 87lemul2ad 11176 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · 𝑥) ≤ ((1 − 𝑡) · 𝑦))
8979, 68, 62, 88leadd2dd 10854 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑥)) ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
9078, 89eqbrtrrd 4828 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
9158, 67remulcld 10282 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑦) ∈ ℝ)
9282simp2d 1138 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
9361, 67, 58, 92, 87lemul2ad 11176 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · 𝑥) ≤ (𝑡 · 𝑦))
9462, 91, 68, 93leadd1dd 10853 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9572oveq1d 6829 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = (1 · 𝑦))
9630adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → 𝑦 ∈ ℂ)
9770, 74, 96adddird 10277 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 + (1 − 𝑡)) · 𝑦) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)))
9896mulid2d 10270 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (1 · 𝑦) = 𝑦)
9995, 97, 983eqtr3d 2802 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑦)) = 𝑦)
10094, 99breqtrd 4830 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)
101 elicc2 12451 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10261, 67, 101syl2anc 696 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦) ↔ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ ∧ 𝑥 ≤ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∧ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ≤ 𝑦)))
10369, 90, 100, 102mpbir3and 1428 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ (𝑥[,]𝑦))
10456, 103sseldd 3745 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
105104ralrimiva 3104 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
106105adantr 472 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
107 oveq1 6821 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → (𝑡 · 𝑥) = ((1 − 𝑠) · 𝑥))
108 oveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑡 = (1 − 𝑠) → (1 − 𝑡) = (1 − (1 − 𝑠)))
109108oveq1d 6829 . . . . . . . . . . . . . . . 16 (𝑡 = (1 − 𝑠) → ((1 − 𝑡) · 𝑦) = ((1 − (1 − 𝑠)) · 𝑦))
110107, 109oveq12d 6832 . . . . . . . . . . . . . . 15 (𝑡 = (1 − 𝑠) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)))
111110eleq1d 2824 . . . . . . . . . . . . . 14 (𝑡 = (1 − 𝑠) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 ↔ (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
112111rspcv 3445 . . . . . . . . . . . . 13 ((1 − 𝑠) ∈ (0[,]1) → (∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴 → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴))
11347, 106, 112sylc 65 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · 𝑥) + ((1 − (1 − 𝑠)) · 𝑦)) ∈ 𝐴)
11445, 113eqeltrd 2839 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
115114ralrimiva 3104 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴)
116 oveq1 6821 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 · 𝑦) = (𝑡 · 𝑦))
117 oveq2 6822 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (1 − 𝑠) = (1 − 𝑡))
118117oveq1d 6829 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((1 − 𝑠) · 𝑥) = ((1 − 𝑡) · 𝑥))
119116, 118oveq12d 6832 . . . . . . . . . . . 12 (𝑠 = 𝑡 → ((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) = ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)))
120119eleq1d 2824 . . . . . . . . . . 11 (𝑠 = 𝑡 → (((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴))
121120cbvralv 3310 . . . . . . . . . 10 (∀𝑠 ∈ (0[,]1)((𝑠 · 𝑦) + ((1 − 𝑠) · 𝑥)) ∈ 𝐴 ↔ ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
122115, 121sylib 208 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑦) + ((1 − 𝑡) · 𝑥)) ∈ 𝐴)
12318, 23, 10, 122, 105wloglei 10772 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑡 ∈ (0[,]1)((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
124123r19.21bi 3070 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
125124anasss 682 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ ((𝑥𝐴𝑦𝐴) ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
12613, 125sylan2b 493 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) ∧ (𝑥𝐴𝑦𝐴𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝐴)
127 eqid 2760 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
12812, 126, 4, 127cvxsconn 31553 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ SConn)
1299, 128eqeltrrd 2840 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn) → 𝐽 ∈ SConn)
130129ex 449 . 2 (𝐴 ⊆ ℝ → (𝐽 ∈ Conn → 𝐽 ∈ SConn))
1313, 130impbid2 216 1 (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050   ⊆ wss 3715   class class class wbr 4804  ran crn 5267  ‘cfv 6049  (class class class)co 6814  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   ≤ cle 10287   − cmin 10478  (,)cioo 12388  [,]cicc 12391   ↾t crest 16303  TopOpenctopn 16304  topGenctg 16320  ℂfldccnfld 19968  Conncconn 21436  PConncpconn 31529  SConncsconn 31530 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-cn 21253  df-cnp 21254  df-conn 21437  df-tx 21587  df-hmeo 21780  df-xms 22346  df-ms 22347  df-tms 22348  df-ii 22901  df-htpy 22990  df-phtpy 22991  df-phtpc 23012  df-pconn 31531  df-sconn 31532 This theorem is referenced by:  ioosconn  31557  iccsconn  31558  iccllysconn  31560
 Copyright terms: Public domain W3C validator