![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescom | Structured version Visualization version GIF version |
Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
rescom | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3949 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
2 | 1 | reseq2i 5549 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ (𝐶 ∩ 𝐵)) |
3 | resres 5568 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) | |
4 | resres 5568 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
5 | 2, 3, 4 | 3eqtr4i 2793 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∩ cin 3715 ↾ cres 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-opab 4866 df-xp 5273 df-rel 5274 df-res 5279 |
This theorem is referenced by: resabs2 5588 setscom 16126 dvres3a 23898 cpnres 23920 dvmptres3 23939 limsupresuz 40457 liminfresuz 40538 |
Copyright terms: Public domain | W3C validator |