Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescnvcnv Structured version   Visualization version   GIF version

Theorem rescnvcnv 5738
 Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rescnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem rescnvcnv
StepHypRef Expression
1 cnvcnv2 5729 . . 3 𝐴 = (𝐴 ↾ V)
21reseq1i 5530 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ↾ 𝐵)
3 resres 5550 . 2 ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵))
4 ssv 3772 . . . 4 𝐵 ⊆ V
5 sseqin2 3966 . . . 4 (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵)
64, 5mpbi 220 . . 3 (V ∩ 𝐵) = 𝐵
76reseq2i 5531 . 2 (𝐴 ↾ (V ∩ 𝐵)) = (𝐴𝐵)
82, 3, 73eqtri 2796 1 (𝐴𝐵) = (𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1630  Vcvv 3349   ∩ cin 3720   ⊆ wss 3721  ◡ccnv 5248   ↾ cres 5251 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-br 4785  df-opab 4845  df-xp 5255  df-rel 5256  df-cnv 5257  df-res 5261 This theorem is referenced by:  cnvcnvres  5739  imacnvcnv  5740  resdm2  5768  resdmres  5769  coires1  5797  f1oresrab  6537
 Copyright terms: Public domain W3C validator