MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescncf Structured version   Visualization version   GIF version

Theorem rescncf 22747
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))

Proof of Theorem rescncf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹 ∈ (𝐴cn𝐵))
2 cncfrss 22741 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
32adantl 481 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐴 ⊆ ℂ)
4 cncfrss2 22742 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
54adantl 481 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐵 ⊆ ℂ)
6 elcncf 22739 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
73, 5, 6syl2anc 694 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
81, 7mpbid 222 . . . . 5 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98simpld 474 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹:𝐴𝐵)
10 simpl 472 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶𝐴)
119, 10fssresd 6109 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶):𝐶𝐵)
128simprd 478 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
13 ssralv 3699 . . . . 5 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
14 ssralv 3699 . . . . . . . . 9 (𝐶𝐴 → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
15 fvres 6245 . . . . . . . . . . . . . . 15 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
16 fvres 6245 . . . . . . . . . . . . . . 15 (𝑤𝐶 → ((𝐹𝐶)‘𝑤) = (𝐹𝑤))
1715, 16oveqan12d 6709 . . . . . . . . . . . . . 14 ((𝑥𝐶𝑤𝐶) → (((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤)) = ((𝐹𝑥) − (𝐹𝑤)))
1817fveq2d 6233 . . . . . . . . . . . . 13 ((𝑥𝐶𝑤𝐶) → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) = (abs‘((𝐹𝑥) − (𝐹𝑤))))
1918breq1d 4695 . . . . . . . . . . . 12 ((𝑥𝐶𝑤𝐶) → ((abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
2019imbi2d 329 . . . . . . . . . . 11 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
2120biimprd 238 . . . . . . . . . 10 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2221ralimdva 2991 . . . . . . . . 9 (𝑥𝐶 → (∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2314, 22sylan9 690 . . . . . . . 8 ((𝐶𝐴𝑥𝐶) → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2423reximdv 3045 . . . . . . 7 ((𝐶𝐴𝑥𝐶) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2524ralimdv 2992 . . . . . 6 ((𝐶𝐴𝑥𝐶) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2625ralimdva 2991 . . . . 5 (𝐶𝐴 → (∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2713, 26syld 47 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2810, 12, 27sylc 65 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))
2910, 3sstrd 3646 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶 ⊆ ℂ)
30 elcncf 22739 . . . 4 ((𝐶 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3129, 5, 30syl2anc 694 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3211, 28, 31mpbir2and 977 . 2 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶) ∈ (𝐶cn𝐵))
3332ex 449 1 (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2030  wral 2941  wrex 2942  wss 3607   class class class wbr 4685  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  cc 9972   < clt 10112  cmin 10304  +crp 11870  abscabs 14018  cnccncf 22726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-cncf 22728
This theorem is referenced by:  cpnres  23745  dvlip  23801  dvlip2  23803  c1liplem1  23804  c1lip2  23806  dvgt0lem1  23810  dvivthlem1  23816  dvne0  23819  lhop1lem  23821  dvcnvrelem1  23825  dvcnvrelem2  23826  dvcvx  23828  dvfsumle  23829  dvfsumabs  23831  dvfsumlem2  23835  ftc2ditglem  23853  itgparts  23855  itgsubstlem  23856  psercn2  24222  abelth  24240  abelth2  24241  efcvx  24248  pige3  24314  dvrelog  24428  logcn  24438  logccv  24454  loglesqrt  24544  rpsqrtcn  30799  cxpcncf1  30801  ftc2re  30804  fdvposlt  30805  fdvposle  30807  itgexpif  30812  ftc1cnnclem  33613  ftc2nc  33624  areacirc  33635  cncfres  33694  itgpowd  38117  areaquad  38119  lhe4.4ex1a  38845  cncfmptss  40137  resincncf  40406  dvbdfbdioolem1  40461  itgsbtaddcnst  40516  fourierdlem38  40680  fourierdlem46  40687  fourierdlem72  40713  fourierdlem90  40731  fourierdlem111  40752  fouriercn  40767
  Copyright terms: Public domain W3C validator