![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resabs1d | Structured version Visualization version GIF version |
Description: Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
resabs1d.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
resabs1d | ⊢ (𝜑 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resabs1d.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
2 | resabs1 5537 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ⊆ wss 3680 ↾ cres 5220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-opab 4821 df-xp 5224 df-rel 5225 df-res 5230 |
This theorem is referenced by: f2ndf 7403 ablfac1eulem 18592 kgencn2 21483 tsmsres 22069 resubmet 22727 xrge0gsumle 22758 cmsss 23268 minveclem3a 23319 dvlip2 23878 c1liplem1 23879 efcvx 24323 logccv 24529 loglesqrt 24619 wilthlem2 24915 bnj1280 31316 cvmlift2lem9 31521 nosupno 32076 nosupbnd1lem1 32081 nosupbnd2 32089 mbfresfi 33688 ssbnd 33819 prdsbnd2 33826 cnpwstotbnd 33828 reheibor 33870 diophin 37755 fnwe2lem2 38040 dvsid 38949 limcresiooub 40294 limcresioolb 40295 dvmptresicc 40554 fourierdlem46 40789 fourierdlem48 40791 fourierdlem49 40792 fourierdlem58 40801 fourierdlem72 40815 fourierdlem73 40816 fourierdlem74 40817 fourierdlem75 40818 fourierdlem89 40832 fourierdlem90 40833 fourierdlem91 40834 fourierdlem93 40836 fourierdlem100 40843 fourierdlem102 40845 fourierdlem103 40846 fourierdlem104 40847 fourierdlem107 40850 fourierdlem111 40854 fourierdlem112 40855 fourierdlem114 40857 afvres 41675 funcrngcsetc 42425 funcrngcsetcALT 42426 funcringcsetc 42462 |
Copyright terms: Public domain | W3C validator |