![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resabs1 | Structured version Visualization version GIF version |
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
resabs1 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 5444 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
2 | sseqin2 3850 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
3 | reseq2 5423 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
4 | 2, 3 | sylbi 207 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
5 | 1, 4 | syl5eq 2697 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∩ cin 3606 ⊆ wss 3607 ↾ cres 5145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-opab 4746 df-xp 5149 df-rel 5150 df-res 5155 |
This theorem is referenced by: resabs1d 5463 resabs2 5464 resiima 5515 fun2ssres 5969 fssres2 6110 smores3 7495 setsres 15948 gsum2dlem2 18416 lindsss 20211 resthauslem 21215 ptcmpfi 21664 tsmsres 21994 ressxms 22377 nrginvrcn 22543 xrge0gsumle 22683 lebnumii 22812 dfrelog 24357 relogf1o 24358 dvlog 24442 dvlog2 24444 efopnlem2 24448 wilthlem2 24840 gsumle 29907 rrhre 30193 iwrdsplit 30577 rpsqrtcn 30799 cvmsss2 31382 nosupres 31978 nosupbnd2lem1 31986 mbfposadd 33587 mzpcompact2lem 37631 eldioph2 37642 diophin 37653 diophrex 37656 2rexfrabdioph 37677 3rexfrabdioph 37678 4rexfrabdioph 37679 6rexfrabdioph 37680 7rexfrabdioph 37681 resabs1i 39650 dvmptresicc 40452 fourierdlem46 40687 fourierdlem57 40698 fourierdlem111 40752 fouriersw 40766 psmeasurelem 41005 |
Copyright terms: Public domain | W3C validator |