Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswsymballbi Structured version   Visualization version   GIF version

Theorem repswsymballbi 13723
 Description: A word is a "repeated symbol word" iff each of its symbols equals the first symbol of the word. (Contributed by AV, 10-Nov-2018.)
Assertion
Ref Expression
repswsymballbi (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
Distinct variable group:   𝑖,𝑊
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem repswsymballbi
StepHypRef Expression
1 fveq2 6348 . . . . 5 (𝑊 = ∅ → (♯‘𝑊) = (♯‘∅))
2 hash0 13346 . . . . 5 (♯‘∅) = 0
31, 2syl6eq 2806 . . . 4 (𝑊 = ∅ → (♯‘𝑊) = 0)
4 fvex 6358 . . . . . . . 8 (𝑊‘0) ∈ V
5 repsw0 13720 . . . . . . . 8 ((𝑊‘0) ∈ V → ((𝑊‘0) repeatS 0) = ∅)
64, 5ax-mp 5 . . . . . . 7 ((𝑊‘0) repeatS 0) = ∅
76eqcomi 2765 . . . . . 6 ∅ = ((𝑊‘0) repeatS 0)
8 simpr 479 . . . . . 6 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → 𝑊 = ∅)
9 oveq2 6817 . . . . . . 7 ((♯‘𝑊) = 0 → ((𝑊‘0) repeatS (♯‘𝑊)) = ((𝑊‘0) repeatS 0))
109adantr 472 . . . . . 6 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → ((𝑊‘0) repeatS (♯‘𝑊)) = ((𝑊‘0) repeatS 0))
117, 8, 103eqtr4a 2816 . . . . 5 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
12 ral0 4216 . . . . . . 7 𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)
13 oveq2 6817 . . . . . . . . 9 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = (0..^0))
14 fzo0 12682 . . . . . . . . 9 (0..^0) = ∅
1513, 14syl6eq 2806 . . . . . . . 8 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = ∅)
1615raleqdv 3279 . . . . . . 7 ((♯‘𝑊) = 0 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)))
1712, 16mpbiri 248 . . . . . 6 ((♯‘𝑊) = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
1817adantr 472 . . . . 5 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
1911, 182thd 255 . . . 4 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
203, 19mpancom 706 . . 3 (𝑊 = ∅ → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
2120a1d 25 . 2 (𝑊 = ∅ → (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
22 df-3an 1074 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
2322a1i 11 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
24 fstwrdne 13527 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉)
2524ancoms 468 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊‘0) ∈ 𝑉)
26 lencl 13506 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2726adantl 473 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℕ0)
28 repsdf2 13721 . . . . 5 (((𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
2925, 27, 28syl2anc 696 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
30 simpr 479 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → 𝑊 ∈ Word 𝑉)
31 eqidd 2757 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) = (♯‘𝑊))
3230, 31jca 555 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)))
3332biantrurd 530 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
3423, 29, 333bitr4d 300 . . 3 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3534ex 449 . 2 (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
3621, 35pm2.61ine 3011 1 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1628   ∈ wcel 2135   ≠ wne 2928  ∀wral 3046  Vcvv 3336  ∅c0 4054  ‘cfv 6045  (class class class)co 6809  0cc0 10124  ℕ0cn0 11480  ..^cfzo 12655  ♯chash 13307  Word cword 13473   repeatS creps 13480 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-n0 11481  df-xnn0 11552  df-z 11566  df-uz 11876  df-fz 12516  df-fzo 12656  df-hash 13308  df-word 13481  df-reps 13488 This theorem is referenced by:  cshw1repsw  13765  cshwsidrepsw  15998  cshwshashlem1  16000  cshwshash  16009
 Copyright terms: Public domain W3C validator