MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswswrd Structured version   Visualization version   GIF version

Theorem repswswrd 13577
Description: A subword of a "repeated symbol word" is again a "repeated symbol word". The assumption N <_ L is required, because otherwise ( L < N ): ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = ∅, but for M < N (𝑆 repeatS (𝑁𝑀))) ≠ ∅! The proof is relatively long because the border cases (𝑀 = 𝑁, ¬ (𝑀..^𝑁) ⊆ (0..^𝐿) must have been considered. (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswswrd (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))

Proof of Theorem repswswrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repsw 13568 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
2 nn0z 11438 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 11438 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
42, 3anim12i 589 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
51, 4anim12i 589 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
6 3anass 1059 . . . . 5 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
75, 6sylibr 224 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
873adant3 1101 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
9 swrdval 13462 . . 3 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
108, 9syl 17 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
11 repsf 13566 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
12113ad2ant1 1102 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
13 fdm 6089 . . . . 5 ((𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉 → dom (𝑆 repeatS 𝐿) = (0..^𝐿))
1412, 13syl 17 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → dom (𝑆 repeatS 𝐿) = (0..^𝐿))
1514sseq2d 3666 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿) ↔ (𝑀..^𝑁) ⊆ (0..^𝐿)))
1615ifbid 4141 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
17 fzon 12528 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
184, 17syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
1918adantl 481 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
2019biimpac 502 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) = ∅)
21 0ss 4005 . . . . . . . 8 ∅ ⊆ (0..^𝐿)
2220, 21syl6eqss 3688 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) ⊆ (0..^𝐿))
23 iftrue 4125 . . . . . . 7 ((𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
2422, 23syl 17 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
25 nn0re 11339 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
26 nn0re 11339 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2725, 26anim12ci 590 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
2827adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
29 suble0 10580 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
3028, 29syl 17 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
3130biimparc 503 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ≤ 0)
32 0z 11426 . . . . . . . . 9 0 ∈ ℤ
33 zsubcl 11457 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
343, 2, 33syl2anr 494 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀) ∈ ℤ)
3534adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀) ∈ ℤ)
3635adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ∈ ℤ)
37 fzon 12528 . . . . . . . . 9 ((0 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3832, 36, 37sylancr 696 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3931, 38mpbid 222 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0..^(𝑁𝑀)) = ∅)
4039mpteq1d 4771 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
41 oveq2 6698 . . . . . . . . . . . . 13 (𝑀 = 𝑁 → (𝑁𝑀) = (𝑁𝑁))
4241oveq2d 6706 . . . . . . . . . . . 12 (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = (𝑆 repeatS (𝑁𝑁)))
43 nn0cn 11340 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
4443adantl 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4544subidd 10418 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑁) = 0)
4645adantl 481 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑁) = 0)
4746oveq2d 6706 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = (𝑆 repeatS 0))
48 repsw0 13570 . . . . . . . . . . . . . 14 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
4948ad2antrr 762 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS 0) = ∅)
5047, 49eqtrd 2685 . . . . . . . . . . . 12 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = ∅)
5142, 50sylan9eqr 2707 . . . . . . . . . . 11 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ 𝑀 = 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅)
5251ex 449 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5352adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5453com12 32 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
55 elnn0z 11428 . . . . . . . . . . . . . . 15 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℤ ∧ 0 ≤ (𝑁𝑀)))
56 subge0 10579 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5726, 25, 56syl2anr 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5825, 26anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
59 letri3 10161 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6160biimprd 238 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6261expd 451 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 → (𝑁𝑀𝑀 = 𝑁)))
6357, 62sylbid 230 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) → (𝑁𝑀𝑀 = 𝑁)))
6463com23 86 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6564adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6665impcom 445 . . . . . . . . . . . . . . . . 17 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁))
6766com12 32 . . . . . . . . . . . . . . . 16 (0 ≤ (𝑁𝑀) → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6867adantl 481 . . . . . . . . . . . . . . 15 (((𝑁𝑀) ∈ ℤ ∧ 0 ≤ (𝑁𝑀)) → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6955, 68sylbi 207 . . . . . . . . . . . . . 14 ((𝑁𝑀) ∈ ℕ0 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
7069com12 32 . . . . . . . . . . . . 13 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ∈ ℕ0𝑀 = 𝑁))
7170con3d 148 . . . . . . . . . . . 12 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (¬ 𝑀 = 𝑁 → ¬ (𝑁𝑀) ∈ ℕ0))
7271impcom 445 . . . . . . . . . . 11 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → ¬ (𝑁𝑀) ∈ ℕ0)
73 df-nel 2927 . . . . . . . . . . 11 ((𝑁𝑀) ∉ ℕ0 ↔ ¬ (𝑁𝑀) ∈ ℕ0)
7472, 73sylibr 224 . . . . . . . . . 10 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑁𝑀) ∉ ℕ0)
75 repsundef 13564 . . . . . . . . . 10 ((𝑁𝑀) ∉ ℕ0 → (𝑆 repeatS (𝑁𝑀)) = ∅)
7674, 75syl 17 . . . . . . . . 9 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
7776ex 449 . . . . . . . 8 𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
7854, 77pm2.61i 176 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
79 mpt0 6059 . . . . . . 7 (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = ∅
8078, 79syl6reqr 2704 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
8124, 40, 803eqtrd 2689 . . . . 5 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
8281expcom 450 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
83823adant3 1101 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
84 ltnle 10155 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8558, 84syl 17 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8685bicomd 213 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁𝑀𝑀 < 𝑁))
87863ad2ant2 1103 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀𝑀 < 𝑁))
8823adantr 480 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
8943ad2ant2 1103 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
9089adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
91 0zd 11427 . . . . . . . . . . . . 13 (𝑆𝑉 → 0 ∈ ℤ)
92 nn0z 11438 . . . . . . . . . . . . 13 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
9391, 92anim12i 589 . . . . . . . . . . . 12 ((𝑆𝑉𝐿 ∈ ℕ0) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
94933ad2ant1 1102 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
9594adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
96 simpr 476 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
97 ssfzo12bi 12603 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
9890, 95, 96, 97syl3anc 1366 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
99 simpl1l 1132 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑆𝑉)
10099ad2antrr 762 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑆𝑉)
101 simpl1r 1133 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ0)
102101ad2antrr 762 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ0)
103 elfzonn0 12552 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0..^(𝑁𝑀)) → 𝑥 ∈ ℕ0)
104 nn0addcl 11366 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℕ0)
105104expcom 450 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
106105adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
1071063ad2ant2 1103 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
108107ad2antrr 762 . . . . . . . . . . . . . . . 16 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
109103, 108syl5com 31 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) ∈ ℕ0))
110109impcom 445 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ ℕ0)
11192adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ)
1121113ad2ant1 1102 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → 𝐿 ∈ ℤ)
113112adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℤ)
114 nn0re 11339 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
115114adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
116115, 58anim12ci 590 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
117 df-3an 1056 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) ↔ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
118116, 117sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
119 ltletr 10167 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
120118, 119syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
121 elnn0z 11428 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
122 0red 10079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 0 ∈ ℝ)
123 zre 11419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
124123adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝑀 ∈ ℝ)
125115adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝐿 ∈ ℝ)
126 lelttr 10166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
127122, 124, 125, 126syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
128127expd 451 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → (0 ≤ 𝑀 → (𝑀 < 𝐿 → 0 < 𝐿)))
129128impancom 455 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
130121, 129sylbi 207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
131130adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
132131impcom 445 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿 → 0 < 𝐿))
133120, 132syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 0 < 𝐿))
134133expcomd 453 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑀 < 𝑁 → 0 < 𝐿)))
1351343impia 1280 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 < 𝐿))
136135imp 444 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 < 𝐿)
137 elnnz 11425 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
138113, 136, 137sylanbrc 699 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ)
139138ad2antrr 762 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ)
140 elfzo0 12548 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0..^(𝑁𝑀)) ↔ (𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)))
141 nn0readdcl 11395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℝ)
142141expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
143142ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
144143impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 + 𝑀) ∈ ℝ)
14526adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
146145adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ)
147146adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑁 ∈ ℝ)
148114ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝐿 ∈ ℝ)
149144, 147, 1483jca 1261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
150149ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℕ0 → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
151150adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
152151impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
153152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
154 nn0re 11339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
155154adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑥 ∈ ℝ)
15625ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℝ)
157156adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 ∈ ℝ)
158155, 157, 147ltaddsubd 10665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁𝑥 < (𝑁𝑀)))
159 idd 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁))
160159ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝐿 → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁)))
161160com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁 → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
162158, 161sylbird 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 < (𝑁𝑀) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
163162impancom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
164163impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁))
165164impac 650 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁𝑁𝐿))
166 ltletr 10167 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((𝑥 + 𝑀) < 𝑁𝑁𝐿) → (𝑥 + 𝑀) < 𝐿))
167153, 165, 166sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → (𝑥 + 𝑀) < 𝐿)
168167exp31 629 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝐿)))
169168com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿)))
170169ex 449 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
171170adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑆𝑉𝐿 ∈ ℕ0) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
1721713imp 1275 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
173172ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
174173com12 32 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
1751743adant2 1100 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
176140, 175sylbi 207 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
177176impcom 445 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) < 𝐿)
178 elfzo0 12548 . . . . . . . . . . . . . 14 ((𝑥 + 𝑀) ∈ (0..^𝐿) ↔ ((𝑥 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝑥 + 𝑀) < 𝐿))
179110, 139, 177, 178syl3anbrc 1265 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^𝐿))
180 repswsymb 13567 . . . . . . . . . . . . 13 ((𝑆𝑉𝐿 ∈ ℕ0 ∧ (𝑥 + 𝑀) ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
181100, 102, 179, 180syl3anc 1366 . . . . . . . . . . . 12 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
182181mpteq2dva 4777 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
183343ad2ant2 1103 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀) ∈ ℤ)
184183adantr 480 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℤ)
185583ad2ant2 1103 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
186 ltle 10164 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
187185, 186syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁𝑀𝑁))
188273ad2ant2 1103 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
189188, 56syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
190187, 189sylibrd 249 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 ≤ (𝑁𝑀)))
191190imp 444 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 ≤ (𝑁𝑀))
192184, 191, 55sylanbrc 699 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℕ0)
19399, 192jca 553 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
194193adantr 480 . . . . . . . . . . . 12 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
195 reps 13563 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁𝑀)) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
196195eqcomd 2657 . . . . . . . . . . . 12 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
197194, 196syl 17 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
198182, 197eqtrd 2685 . . . . . . . . . 10 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
199198ex 449 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((0 ≤ 𝑀𝑁𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
20098, 199sylbid 230 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
201200impcom 445 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
20288, 201eqtrd 2685 . . . . . 6 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
203 iffalse 4128 . . . . . . . 8 (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
204203adantr 480 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
20598notbid 307 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ↔ ¬ (0 ≤ 𝑀𝑁𝐿)))
206 ianor 508 . . . . . . . . . . 11 (¬ (0 ≤ 𝑀𝑁𝐿) ↔ (¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿))
207 nn0ge0 11356 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
208 pm2.24 121 . . . . . . . . . . . . . . . . 17 (0 ≤ 𝑀 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
209207, 208syl 17 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
210209adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2112103ad2ant2 1103 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
212211adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
213212com12 32 . . . . . . . . . . . 12 (¬ 0 ≤ 𝑀 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
214 pm2.24 121 . . . . . . . . . . . . . . 15 (𝑁𝐿 → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2152143ad2ant3 1104 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
216215adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
217216com12 32 . . . . . . . . . . . 12 𝑁𝐿 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
218213, 217jaoi 393 . . . . . . . . . . 11 ((¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
219206, 218sylbi 207 . . . . . . . . . 10 (¬ (0 ≤ 𝑀𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
220219com12 32 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (0 ≤ 𝑀𝑁𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
221205, 220sylbid 230 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
222221impcom 445 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑆 repeatS (𝑁𝑀)) = ∅)
223204, 222eqtr4d 2688 . . . . . 6 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
224202, 223pm2.61ian 848 . . . . 5 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
225224ex 449 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22687, 225sylbid 230 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22783, 226pm2.61d 170 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
22810, 16, 2273eqtrd 2689 1 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wnel 2926  wss 3607  c0 3948  ifcif 4119  cop 4216   class class class wbr 4685  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  0cn0 11330  cz 11415  ..^cfzo 12504  Word cword 13323   substr csubstr 13327   repeatS creps 13330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-substr 13335  df-reps 13338
This theorem is referenced by:  repswcshw  13604
  Copyright terms: Public domain W3C validator