Proof of Theorem repsdf2
Step | Hyp | Ref
| Expression |
1 | | repsconst 13719 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆})) |
2 | 1 | eqeq2d 2770 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ 𝑊 = ((0..^𝑁) × {𝑆}))) |
3 | | fconst2g 6632 |
. . 3
⊢ (𝑆 ∈ 𝑉 → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆}))) |
4 | 3 | adantr 472 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆}))) |
5 | | fconstfv 6640 |
. . . . . . . . 9
⊢ (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆)) |
6 | | simpr 479 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → 𝑊:(0..^𝑁)⟶{𝑆}) |
7 | | snssi 4484 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ 𝑉 → {𝑆} ⊆ 𝑉) |
8 | 7 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → {𝑆} ⊆ 𝑉) |
9 | 8 | adantr 472 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → {𝑆} ⊆ 𝑉) |
10 | 6, 9 | jca 555 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉)) |
11 | | fss 6217 |
. . . . . . . . . . . 12
⊢ ((𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉) → 𝑊:(0..^𝑁)⟶𝑉) |
12 | | iswrdi 13495 |
. . . . . . . . . . . 12
⊢ (𝑊:(0..^𝑁)⟶𝑉 → 𝑊 ∈ Word 𝑉) |
13 | 10, 11, 12 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → 𝑊 ∈ Word 𝑉) |
14 | | ffzo0hash 13425 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 Fn (0..^𝑁)) → (♯‘𝑊) = 𝑁) |
15 | 14 | expcom 450 |
. . . . . . . . . . . . . 14
⊢ (𝑊 Fn (0..^𝑁) → (𝑁 ∈ ℕ0 →
(♯‘𝑊) = 𝑁)) |
16 | | ffn 6206 |
. . . . . . . . . . . . . 14
⊢ (𝑊:(0..^𝑁)⟶{𝑆} → 𝑊 Fn (0..^𝑁)) |
17 | 15, 16 | syl11 33 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁)) |
18 | 17 | adantl 473 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁)) |
19 | 18 | imp 444 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (♯‘𝑊) = 𝑁) |
20 | 13, 19 | jca 555 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) |
21 | 20 | ex 449 |
. . . . . . . . 9
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))) |
22 | 5, 21 | syl5bir 233 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))) |
23 | 22 | expcomd 453 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(∀𝑖 ∈
(0..^𝑁)(𝑊‘𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))) |
24 | 23 | imp 444 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))) |
25 | | wrdf 13496 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Word 𝑉 → 𝑊:(0..^(♯‘𝑊))⟶𝑉) |
26 | | ffn 6206 |
. . . . . . . . . 10
⊢ (𝑊:(0..^(♯‘𝑊))⟶𝑉 → 𝑊 Fn (0..^(♯‘𝑊))) |
27 | | oveq2 6821 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑊) =
𝑁 →
(0..^(♯‘𝑊)) =
(0..^𝑁)) |
28 | 27 | fneq2d 6143 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑊) =
𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) ↔ 𝑊 Fn (0..^𝑁))) |
29 | 28 | biimpd 219 |
. . . . . . . . . . . 12
⊢
((♯‘𝑊) =
𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁))) |
30 | 29 | a1d 25 |
. . . . . . . . . . 11
⊢
((♯‘𝑊) =
𝑁 → ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁)))) |
31 | 30 | com13 88 |
. . . . . . . . . 10
⊢ (𝑊 Fn (0..^(♯‘𝑊)) → ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((♯‘𝑊) = 𝑁 → 𝑊 Fn (0..^𝑁)))) |
32 | 25, 26, 31 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑊 ∈ Word 𝑉 → ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((♯‘𝑊) = 𝑁 → 𝑊 Fn (0..^𝑁)))) |
33 | 32 | com12 32 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 𝑁 → 𝑊 Fn (0..^𝑁)))) |
34 | 33 | impd 446 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁))) |
35 | 34 | adantr 472 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁))) |
36 | 24, 35 | impbid 202 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))) |
37 | 36 | ex 449 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(∀𝑖 ∈
(0..^𝑁)(𝑊‘𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))) |
38 | 37 | pm5.32rd 675 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆))) |
39 | | df-3an 1074 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆)) |
40 | 38, 5, 39 | 3bitr4g 303 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆))) |
41 | 2, 4, 40 | 3bitr2d 296 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆))) |