Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprval Structured version   Visualization version   GIF version

Theorem reprval 31019
Description: Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴 (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprval (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑎,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝑀(𝑎)

Proof of Theorem reprval
Dummy variables 𝑏 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-repr 31018 . . . 4 repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}))
21a1i 11 . . 3 (𝜑 → repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚})))
3 oveq2 6823 . . . . . . 7 (𝑠 = 𝑆 → (0..^𝑠) = (0..^𝑆))
43oveq2d 6831 . . . . . 6 (𝑠 = 𝑆 → (𝑏𝑚 (0..^𝑠)) = (𝑏𝑚 (0..^𝑆)))
53sumeq1d 14651 . . . . . . 7 (𝑠 = 𝑆 → Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
65eqeq1d 2763 . . . . . 6 (𝑠 = 𝑆 → (Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚))
74, 6rabeqbidv 3336 . . . . 5 (𝑠 = 𝑆 → {𝑐 ∈ (𝑏𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚} = {𝑐 ∈ (𝑏𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚})
87mpt2eq3dv 6888 . . . 4 (𝑠 = 𝑆 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}))
98adantl 473 . . 3 ((𝜑𝑠 = 𝑆) → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}))
10 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
11 nnex 11239 . . . . . 6 ℕ ∈ V
1211pwex 4998 . . . . 5 𝒫 ℕ ∈ V
13 zex 11599 . . . . 5 ℤ ∈ V
1412, 13mpt2ex 7417 . . . 4 (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}) ∈ V
1514a1i 11 . . 3 (𝜑 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}) ∈ V)
162, 9, 10, 15fvmptd 6452 . 2 (𝜑 → (repr‘𝑆) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}))
17 simprl 811 . . . 4 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → 𝑏 = 𝐴)
1817oveq1d 6830 . . 3 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → (𝑏𝑚 (0..^𝑆)) = (𝐴𝑚 (0..^𝑆)))
19 simprr 813 . . . 4 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → 𝑚 = 𝑀)
2019eqeq2d 2771 . . 3 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → (Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
2118, 20rabeqbidv 3336 . 2 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → {𝑐 ∈ (𝑏𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚} = {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
2211a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
23 reprval.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2422, 23ssexd 4958 . . 3 (𝜑𝐴 ∈ V)
2524, 23elpwd 4312 . 2 (𝜑𝐴 ∈ 𝒫 ℕ)
26 reprval.m . 2 (𝜑𝑀 ∈ ℤ)
27 ovex 6843 . . . 4 (𝐴𝑚 (0..^𝑆)) ∈ V
2827rabex 4965 . . 3 {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ∈ V
2928a1i 11 . 2 (𝜑 → {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ∈ V)
3016, 21, 25, 26, 29ovmpt2d 6955 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  {crab 3055  Vcvv 3341  wss 3716  𝒫 cpw 4303  cmpt 4882  cfv 6050  (class class class)co 6815  cmpt2 6817  𝑚 cmap 8026  0cc0 10149  cn 11233  0cn0 11505  cz 11590  ..^cfzo 12680  Σcsu 14636  reprcrepr 31017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-i2m1 10217  ax-1ne0 10218  ax-rrecex 10221  ax-cnre 10222
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-neg 10482  df-nn 11234  df-z 11591  df-seq 13017  df-sum 14637  df-repr 31018
This theorem is referenced by:  repr0  31020  reprf  31021  reprsum  31022  reprsuc  31024  reprfi  31025  reprss  31026  reprinrn  31027  reprlt  31028  reprgt  31030  reprinfz1  31031  reprpmtf1o  31035  reprdifc  31036  breprexplema  31039
  Copyright terms: Public domain W3C validator