![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reprval | Structured version Visualization version GIF version |
Description: Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴 (Contributed by Thierry Arnoux, 1-Dec-2021.) |
Ref | Expression |
---|---|
reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
Ref | Expression |
---|---|
reprval | ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-repr 31018 | . . . 4 ⊢ repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}))) |
3 | oveq2 6823 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (0..^𝑠) = (0..^𝑆)) | |
4 | 3 | oveq2d 6831 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑏 ↑𝑚 (0..^𝑠)) = (𝑏 ↑𝑚 (0..^𝑆))) |
5 | 3 | sumeq1d 14651 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎)) |
6 | 5 | eqeq1d 2763 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚)) |
7 | 4, 6 | rabeqbidv 3336 | . . . . 5 ⊢ (𝑠 = 𝑆 → {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) |
8 | 7 | mpt2eq3dv 6888 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
9 | 8 | adantl 473 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = 𝑆) → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
10 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
11 | nnex 11239 | . . . . . 6 ⊢ ℕ ∈ V | |
12 | 11 | pwex 4998 | . . . . 5 ⊢ 𝒫 ℕ ∈ V |
13 | zex 11599 | . . . . 5 ⊢ ℤ ∈ V | |
14 | 12, 13 | mpt2ex 7417 | . . . 4 ⊢ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V) |
16 | 2, 9, 10, 15 | fvmptd 6452 | . 2 ⊢ (𝜑 → (repr‘𝑆) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
17 | simprl 811 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑏 = 𝐴) | |
18 | 17 | oveq1d 6830 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (𝑏 ↑𝑚 (0..^𝑆)) = (𝐴 ↑𝑚 (0..^𝑆))) |
19 | simprr 813 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑚 = 𝑀) | |
20 | 19 | eqeq2d 2771 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) |
21 | 18, 20 | rabeqbidv 3336 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
22 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ∈ V) |
23 | reprval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
24 | 22, 23 | ssexd 4958 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
25 | 24, 23 | elpwd 4312 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ℕ) |
26 | reprval.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
27 | ovex 6843 | . . . 4 ⊢ (𝐴 ↑𝑚 (0..^𝑆)) ∈ V | |
28 | 27 | rabex 4965 | . . 3 ⊢ {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V |
29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V) |
30 | 16, 21, 25, 26, 29 | ovmpt2d 6955 | 1 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 {crab 3055 Vcvv 3341 ⊆ wss 3716 𝒫 cpw 4303 ↦ cmpt 4882 ‘cfv 6050 (class class class)co 6815 ↦ cmpt2 6817 ↑𝑚 cmap 8026 0cc0 10149 ℕcn 11233 ℕ0cn0 11505 ℤcz 11590 ..^cfzo 12680 Σcsu 14636 reprcrepr 31017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-i2m1 10217 ax-1ne0 10218 ax-rrecex 10221 ax-cnre 10222 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-neg 10482 df-nn 11234 df-z 11591 df-seq 13017 df-sum 14637 df-repr 31018 |
This theorem is referenced by: repr0 31020 reprf 31021 reprsum 31022 reprsuc 31024 reprfi 31025 reprss 31026 reprinrn 31027 reprlt 31028 reprgt 31030 reprinfz1 31031 reprpmtf1o 31035 reprdifc 31036 breprexplema 31039 |
Copyright terms: Public domain | W3C validator |