Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprlt Structured version   Visualization version   GIF version

Theorem reprlt 31027
 Description: There are no representations of 𝑀 with more than 𝑀 terms. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprlt.1 (𝜑𝑀 < 𝑆)
Assertion
Ref Expression
reprlt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprlt
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
41, 2, 3reprval 31018 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
52zred 11694 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
65adantr 472 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑀 ∈ ℝ)
73nn0red 11564 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
87adantr 472 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑆 ∈ ℝ)
9 fzofi 12987 . . . . . . . . . 10 (0..^𝑆) ∈ Fin
109a1i 11 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → (0..^𝑆) ∈ Fin)
11 nnssre 11236 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
1211a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ⊆ ℝ)
131, 12sstrd 3754 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1413ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 nnex 11238 . . . . . . . . . . . . . . . 16 ℕ ∈ V
1615a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℕ ∈ V)
1716, 1ssexd 4957 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
1817adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝐴 ∈ V)
199elexi 3353 . . . . . . . . . . . . . 14 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 479 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐 ∈ (𝐴𝑚 (0..^𝑆)))
22 elmapg 8038 . . . . . . . . . . . . . 14 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 502 . . . . . . . . . . . . 13 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 1476 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 472 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 479 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelrnd 6524 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3745 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
2910, 28fsumrecl 14684 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
30 reprlt.1 . . . . . . . . 9 (𝜑𝑀 < 𝑆)
3130adantr 472 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑀 < 𝑆)
32 ax-1cn 10206 . . . . . . . . . . . . 13 1 ∈ ℂ
33 fsumconst 14741 . . . . . . . . . . . . 13 (((0..^𝑆) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)1 = ((♯‘(0..^𝑆)) · 1))
349, 32, 33mp2an 710 . . . . . . . . . . . 12 Σ𝑎 ∈ (0..^𝑆)1 = ((♯‘(0..^𝑆)) · 1)
35 hashcl 13359 . . . . . . . . . . . . . . 15 ((0..^𝑆) ∈ Fin → (♯‘(0..^𝑆)) ∈ ℕ0)
369, 35ax-mp 5 . . . . . . . . . . . . . 14 (♯‘(0..^𝑆)) ∈ ℕ0
3736nn0cni 11516 . . . . . . . . . . . . 13 (♯‘(0..^𝑆)) ∈ ℂ
3837mulid1i 10254 . . . . . . . . . . . 12 ((♯‘(0..^𝑆)) · 1) = (♯‘(0..^𝑆))
3934, 38eqtri 2782 . . . . . . . . . . 11 Σ𝑎 ∈ (0..^𝑆)1 = (♯‘(0..^𝑆))
40 hashfzo0 13429 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
413, 40syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
4239, 41syl5eq 2806 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
4342adantr 472 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
44 1red 10267 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ∈ ℝ)
451ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
4645, 27sseldd 3745 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
47 nnge1 11258 . . . . . . . . . . 11 ((𝑐𝑎) ∈ ℕ → 1 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ≤ (𝑐𝑎))
4910, 44, 28, 48fsumle 14750 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5043, 49eqbrtrrd 4828 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑆 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
516, 8, 29, 31, 50ltletrd 10409 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑀 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
526, 51ltned 10385 . . . . . 6 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑀 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5352necomd 2987 . . . . 5 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5453neneqd 2937 . . . 4 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5554ralrimiva 3104 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
56 rabeq0 4100 . . 3 ({𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5755, 56sylibr 224 . 2 (𝜑 → {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
584, 57eqtrd 2794 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  Vcvv 3340   ⊆ wss 3715  ∅c0 4058   class class class wbr 4804  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814   ↑𝑚 cmap 8025  Fincfn 8123  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   · cmul 10153   < clt 10286   ≤ cle 10287  ℕcn 11232  ℕ0cn0 11504  ℤcz 11589  ..^cfzo 12679  ♯chash 13331  Σcsu 14635  reprcrepr 31016 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-ico 12394  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-repr 31017 This theorem is referenced by:  breprexplemc  31040
 Copyright terms: Public domain W3C validator