Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repr0 Structured version   Visualization version   GIF version

Theorem repr0 30998
Description: There is exactly one representation with no elements (an empty sum), only for 𝑀 = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
repr0 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))

Proof of Theorem repr0
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 0nn0 11499 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
51, 2, 4reprval 30997 . 2 (𝜑 → (𝐴(repr‘0)𝑀) = {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
6 fzo0 12686 . . . . . . . . 9 (0..^0) = ∅
76sumeq1i 14627 . . . . . . . 8 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = Σ𝑎 ∈ ∅ (𝑐𝑎)
8 sum0 14651 . . . . . . . 8 Σ𝑎 ∈ ∅ (𝑐𝑎) = 0
97, 8eqtri 2782 . . . . . . 7 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0
109eqeq1i 2765 . . . . . 6 𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀)
1110a1i 11 . . . . 5 (𝑐 = ∅ → (Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀))
12 0ex 4942 . . . . . . . . 9 ∅ ∈ V
1312snid 4353 . . . . . . . 8 ∅ ∈ {∅}
14 nnex 11218 . . . . . . . . . . 11 ℕ ∈ V
1514a1i 11 . . . . . . . . . 10 (𝜑 → ℕ ∈ V)
1615, 1ssexd 4957 . . . . . . . . 9 (𝜑𝐴 ∈ V)
17 mapdm0 8038 . . . . . . . . 9 (𝐴 ∈ V → (𝐴𝑚 ∅) = {∅})
1816, 17syl 17 . . . . . . . 8 (𝜑 → (𝐴𝑚 ∅) = {∅})
1913, 18syl5eleqr 2846 . . . . . . 7 (𝜑 → ∅ ∈ (𝐴𝑚 ∅))
206oveq2i 6824 . . . . . . 7 (𝐴𝑚 (0..^0)) = (𝐴𝑚 ∅)
2119, 20syl6eleqr 2850 . . . . . 6 (𝜑 → ∅ ∈ (𝐴𝑚 (0..^0)))
2221adantr 472 . . . . 5 ((𝜑𝑀 = 0) → ∅ ∈ (𝐴𝑚 (0..^0)))
23 simpr 479 . . . . . 6 ((𝜑𝑀 = 0) → 𝑀 = 0)
2423eqcomd 2766 . . . . 5 ((𝜑𝑀 = 0) → 0 = 𝑀)
2520, 18syl5eq 2806 . . . . . . . . 9 (𝜑 → (𝐴𝑚 (0..^0)) = {∅})
2625eleq2d 2825 . . . . . . . 8 (𝜑 → (𝑐 ∈ (𝐴𝑚 (0..^0)) ↔ 𝑐 ∈ {∅}))
2726biimpa 502 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^0))) → 𝑐 ∈ {∅})
28 elsni 4338 . . . . . . 7 (𝑐 ∈ {∅} → 𝑐 = ∅)
2927, 28syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^0))) → 𝑐 = ∅)
3029ad4ant13 1207 . . . . 5 ((((𝜑𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) ∧ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀) → 𝑐 = ∅)
3111, 22, 24, 30rabeqsnd 29649 . . . 4 ((𝜑𝑀 = 0) → {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = {∅})
3231eqcomd 2766 . . 3 ((𝜑𝑀 = 0) → {∅} = {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
339a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0)
34 simplr 809 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → ¬ 𝑀 = 0)
3534neqned 2939 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → 𝑀 ≠ 0)
3635necomd 2987 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → 0 ≠ 𝑀)
3733, 36eqnetrd 2999 . . . . . . 7 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) ≠ 𝑀)
3837neneqd 2937 . . . . . 6 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
3938ralrimiva 3104 . . . . 5 ((𝜑 ∧ ¬ 𝑀 = 0) → ∀𝑐 ∈ (𝐴𝑚 (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
40 rabeq0 4100 . . . . 5 ({𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴𝑚 (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
4139, 40sylibr 224 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 0) → {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅)
4241eqcomd 2766 . . 3 ((𝜑 ∧ ¬ 𝑀 = 0) → ∅ = {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
4332, 42ifeqda 4265 . 2 (𝜑 → if(𝑀 = 0, {∅}, ∅) = {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
445, 43eqtr4d 2797 1 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  {crab 3054  Vcvv 3340  wss 3715  c0 4058  ifcif 4230  {csn 4321  cfv 6049  (class class class)co 6813  𝑚 cmap 8023  0cc0 10128  cn 11212  0cn0 11484  cz 11569  ..^cfzo 12659  Σcsu 14615  reprcrepr 30995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-repr 30996
This theorem is referenced by:  breprexp  31020
  Copyright terms: Public domain W3C validator