MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reparphti Structured version   Visualization version   GIF version

Theorem reparphti 23018
Description: Lemma for reparpht 23019. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
reparpht.2 (𝜑𝐹 ∈ (II Cn 𝐽))
reparpht.3 (𝜑𝐺 ∈ (II Cn II))
reparpht.4 (𝜑 → (𝐺‘0) = 0)
reparpht.5 (𝜑 → (𝐺‘1) = 1)
reparphti.6 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
Assertion
Ref Expression
reparphti (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)

Proof of Theorem reparphti
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reparpht.3 . . 3 (𝜑𝐺 ∈ (II Cn II))
2 reparpht.2 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
3 cnco 21293 . . 3 ((𝐺 ∈ (II Cn II) ∧ 𝐹 ∈ (II Cn 𝐽)) → (𝐹𝐺) ∈ (II Cn 𝐽))
41, 2, 3syl2anc 696 . 2 (𝜑 → (𝐹𝐺) ∈ (II Cn 𝐽))
5 reparphti.6 . . 3 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
6 iitopon 22904 . . . . 5 II ∈ (TopOn‘(0[,]1))
76a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
8 eqid 2761 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
98cnfldtop 22809 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
10 cnrest2r 21314 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
119, 10mp1i 13 . . . . . . . . 9 (𝜑 → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
127, 7cnmpt2nd 21695 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn II))
13 iirevcn 22951 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II))
15 oveq2 6823 . . . . . . . . . . 11 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
167, 7, 12, 7, 14, 15cnmpt21 21697 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn II))
178dfii3 22908 . . . . . . . . . . 11 II = ((TopOpen‘ℂfld) ↾t (0[,]1))
1817oveq2i 6826 . . . . . . . . . 10 ((II ×t II) Cn II) = ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
1916, 18syl6eleq 2850 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2011, 19sseldd 3746 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
217, 7cnmpt1st 21694 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn II))
227, 7, 21, 1cnmpt21f 21698 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn II))
2322, 18syl6eleq 2850 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2411, 23sseldd 3746 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
258mulcn 22892 . . . . . . . . 9 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2625a1i 11 . . . . . . . 8 (𝜑 → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
277, 7, 20, 24, 26cnmpt22f 21701 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((1 − 𝑦) · (𝐺𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
2812, 18syl6eleq 2850 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2911, 28sseldd 3746 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
3021, 18syl6eleq 2850 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
3111, 30sseldd 3746 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
327, 7, 29, 31, 26cnmpt22f 21701 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑦 · 𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
338addcn 22890 . . . . . . . 8 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3433a1i 11 . . . . . . 7 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
357, 7, 27, 32, 34cnmpt22f 21701 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
368cnfldtopon 22808 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3736a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
38 iiuni 22906 . . . . . . . . . . . . . . 15 (0[,]1) = II
3938, 38cnf 21273 . . . . . . . . . . . . . 14 (𝐺 ∈ (II Cn II) → 𝐺:(0[,]1)⟶(0[,]1))
401, 39syl 17 . . . . . . . . . . . . 13 (𝜑𝐺:(0[,]1)⟶(0[,]1))
4140ffvelrnda 6524 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]1)) → (𝐺𝑥) ∈ (0[,]1))
4241adantrr 755 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (𝐺𝑥) ∈ (0[,]1))
43 simprl 811 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 ∈ (0[,]1))
44 simprr 813 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑦 ∈ (0[,]1))
45 0re 10253 . . . . . . . . . . . 12 0 ∈ ℝ
46 1re 10252 . . . . . . . . . . . 12 1 ∈ ℝ
47 icccvx 22971 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1)))
4845, 46, 47mp2an 710 . . . . . . . . . . 11 (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
4942, 43, 44, 48syl3anc 1477 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
5049ralrimivva 3110 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
51 eqid 2761 . . . . . . . . . 10 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))
5251fmpt2 7407 . . . . . . . . 9 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
5350, 52sylib 208 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
54 frn 6215 . . . . . . . 8 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1))
5553, 54syl 17 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1))
56 unitssre 12533 . . . . . . . . 9 (0[,]1) ⊆ ℝ
57 ax-resscn 10206 . . . . . . . . 9 ℝ ⊆ ℂ
5856, 57sstri 3754 . . . . . . . 8 (0[,]1) ⊆ ℂ
5958a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
60 cnrest2 21313 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6137, 55, 59, 60syl3anc 1477 . . . . . 6 (𝜑 → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6235, 61mpbid 222 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
6362, 18syl6eleqr 2851 . . . 4 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn II))
647, 7, 63, 2cnmpt21f 21698 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))) ∈ ((II ×t II) Cn 𝐽))
655, 64syl5eqel 2844 . 2 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
6640ffvelrnda 6524 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ (0[,]1))
6758, 66sseldi 3743 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ ℂ)
6867mulid2d 10271 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · (𝐺𝑠)) = (𝐺𝑠))
6958sseli 3741 . . . . . . . 8 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℂ)
7069adantl 473 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
7170mul02d 10447 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · 𝑠) = 0)
7268, 71oveq12d 6833 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = ((𝐺𝑠) + 0))
7367addid1d 10449 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐺𝑠) + 0) = (𝐺𝑠))
7472, 73eqtrd 2795 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = (𝐺𝑠))
7574fveq2d 6358 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) = (𝐹‘(𝐺𝑠)))
76 simpr 479 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
77 0elunit 12504 . . . 4 0 ∈ (0[,]1)
78 simpr 479 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
7978oveq2d 6831 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = (1 − 0))
80 1m0e1 11344 . . . . . . . . 9 (1 − 0) = 1
8179, 80syl6eq 2811 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = 1)
82 simpl 474 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
8382fveq2d 6358 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (𝐺𝑥) = (𝐺𝑠))
8481, 83oveq12d 6833 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((1 − 𝑦) · (𝐺𝑥)) = (1 · (𝐺𝑠)))
8578, 82oveq12d 6833 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (𝑦 · 𝑥) = (0 · 𝑠))
8684, 85oveq12d 6833 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((1 · (𝐺𝑠)) + (0 · 𝑠)))
8786fveq2d 6358 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
88 fvex 6364 . . . . 5 (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) ∈ V
8987, 5, 88ovmpt2a 6958 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
9076, 77, 89sylancl 697 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
91 fvco3 6439 . . . 4 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9240, 91sylan 489 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9375, 90, 923eqtr4d 2805 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = ((𝐹𝐺)‘𝑠))
94 1elunit 12505 . . . 4 1 ∈ (0[,]1)
95 simpr 479 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
9695oveq2d 6831 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = (1 − 1))
97 1m1e0 11302 . . . . . . . . 9 (1 − 1) = 0
9896, 97syl6eq 2811 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = 0)
99 simpl 474 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
10099fveq2d 6358 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝐺𝑥) = (𝐺𝑠))
10198, 100oveq12d 6833 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((1 − 𝑦) · (𝐺𝑥)) = (0 · (𝐺𝑠)))
10295, 99oveq12d 6833 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (𝑦 · 𝑥) = (1 · 𝑠))
103101, 102oveq12d 6833 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((0 · (𝐺𝑠)) + (1 · 𝑠)))
104103fveq2d 6358 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
105 fvex 6364 . . . . 5 (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) ∈ V
106104, 5, 105ovmpt2a 6958 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10776, 94, 106sylancl 697 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10867mul02d 10447 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · (𝐺𝑠)) = 0)
10970mulid2d 10271 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · 𝑠) = 𝑠)
110108, 109oveq12d 6833 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = (0 + 𝑠))
11170addid2d 10450 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (0 + 𝑠) = 𝑠)
112110, 111eqtrd 2795 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = 𝑠)
113112fveq2d 6358 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) = (𝐹𝑠))
114107, 113eqtrd 2795 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹𝑠))
115 reparpht.4 . . . . . . . . 9 (𝜑 → (𝐺‘0) = 0)
116115adantr 472 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘0) = 0)
117116oveq2d 6831 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = ((1 − 𝑠) · 0))
118 ax-1cn 10207 . . . . . . . . 9 1 ∈ ℂ
119 subcl 10493 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
120118, 70, 119sylancr 698 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
121120mul01d 10448 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 0) = 0)
122117, 121eqtrd 2795 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = 0)
12370mul01d 10448 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 0) = 0)
124122, 123oveq12d 6833 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = (0 + 0))
125 00id 10424 . . . . 5 (0 + 0) = 0
126124, 125syl6eq 2811 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = 0)
127126fveq2d 6358 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) = (𝐹‘0))
128 simpr 479 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
129128oveq2d 6831 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
130 simpl 474 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
131130fveq2d 6358 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘0))
132129, 131oveq12d 6833 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘0)))
133128, 130oveq12d 6833 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 0))
134132, 133oveq12d 6833 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)))
135134fveq2d 6358 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
136 fvex 6364 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) ∈ V
137135, 5, 136ovmpt2a 6958 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
13877, 76, 137sylancr 698 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
139 fvco3 6439 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 0 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
14040, 77, 139sylancl 697 . . . . 5 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
141115fveq2d 6358 . . . . 5 (𝜑 → (𝐹‘(𝐺‘0)) = (𝐹‘0))
142140, 141eqtrd 2795 . . . 4 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘0))
143142adantr 472 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘0))
144127, 138, 1433eqtr4d 2805 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = ((𝐹𝐺)‘0))
145 reparpht.5 . . . . . . . . 9 (𝜑 → (𝐺‘1) = 1)
146145adantr 472 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘1) = 1)
147146oveq2d 6831 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = ((1 − 𝑠) · 1))
148120mulid1d 10270 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 1) = (1 − 𝑠))
149147, 148eqtrd 2795 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = (1 − 𝑠))
15070mulid1d 10270 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 1) = 𝑠)
151149, 150oveq12d 6833 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = ((1 − 𝑠) + 𝑠))
152 npcan 10503 . . . . . 6 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((1 − 𝑠) + 𝑠) = 1)
153118, 70, 152sylancr 698 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) + 𝑠) = 1)
154151, 153eqtrd 2795 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = 1)
155154fveq2d 6358 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) = (𝐹‘1))
156 simpr 479 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
157156oveq2d 6831 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
158 simpl 474 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
159158fveq2d 6358 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘1))
160157, 159oveq12d 6833 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘1)))
161156, 158oveq12d 6833 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 1))
162160, 161oveq12d 6833 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)))
163162fveq2d 6358 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
164 fvex 6364 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) ∈ V
165163, 5, 164ovmpt2a 6958 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
16694, 76, 165sylancr 698 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
167 fvco3 6439 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 1 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
16840, 94, 167sylancl 697 . . . . 5 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
169145fveq2d 6358 . . . . 5 (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹‘1))
170168, 169eqtrd 2795 . . . 4 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘1))
171170adantr 472 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘1))
172155, 166, 1713eqtr4d 2805 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = ((𝐹𝐺)‘1))
1734, 2, 65, 93, 114, 144, 172isphtpy2d 23008 1 (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wral 3051  wss 3716  cmpt 4882   × cxp 5265  ran crn 5268  ccom 5271  wf 6046  cfv 6050  (class class class)co 6815  cmpt2 6817  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  cmin 10479  [,]cicc 12392  t crest 16304  TopOpenctopn 16305  fldccnfld 19969  Topctop 20921  TopOnctopon 20938   Cn ccn 21251   ×t ctx 21586  IIcii 22900  PHtpycphtpy 22989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-icc 12396  df-fz 12541  df-fzo 12681  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cn 21254  df-cnp 21255  df-tx 21588  df-hmeo 21781  df-xms 22347  df-ms 22348  df-tms 22349  df-ii 22902  df-htpy 22991  df-phtpy 22992
This theorem is referenced by:  reparpht  23019
  Copyright terms: Public domain W3C validator