![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renepnf | Structured version Visualization version GIF version |
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 10119 | . . . 4 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2928 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
3 | eleq1 2718 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 316 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2852 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ℝcr 9973 +∞cpnf 10109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 ax-resscn 10031 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-pw 4193 df-sn 4211 df-pr 4213 df-uni 4469 df-pnf 10114 |
This theorem is referenced by: renepnfd 10128 renfdisj 10136 xrnepnf 11990 rexneg 12080 rexadd 12101 xaddnepnf 12106 xaddcom 12109 xaddid1 12110 xnn0xadd0 12115 xnegdi 12116 xpncan 12119 xleadd1a 12121 rexmul 12139 xmulpnf1 12142 xadddilem 12162 rpsup 12705 hashneq0 13193 hash1snb 13245 xrsnsgrp 19830 xaddeq0 29646 icorempt2 33329 ovoliunnfl 33581 voliunnfl 33583 volsupnfl 33584 supxrgelem 39866 supxrge 39867 infleinflem1 39899 infleinflem2 39900 xrre4 39951 supminfxr2 40012 climxrre 40300 sge0repnf 40921 voliunsge0lem 41007 |
Copyright terms: Public domain | W3C validator |