MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renemnf Structured version   Visualization version   GIF version

Theorem renemnf 10280
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renemnf (𝐴 ∈ ℝ → 𝐴 ≠ -∞)

Proof of Theorem renemnf
StepHypRef Expression
1 mnfnre 10274 . . . 4 -∞ ∉ ℝ
21neli 3037 . . 3 ¬ -∞ ∈ ℝ
3 eleq1 2827 . . 3 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ))
42, 3mtbiri 316 . 2 (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ)
54necon2ai 2961 1 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wne 2932  cr 10127  -∞cmnf 10264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269
This theorem is referenced by:  renemnfd  10283  renfdisj  10290  xrnemnf  12144  rexneg  12235  rexadd  12256  xaddnemnf  12260  xaddcom  12264  xaddid1  12265  xnegdi  12271  xpncan  12274  xleadd1a  12276  rexmul  12294  xadddilem  12317  xrs1mnd  19986  xrs10  19987  isxmet2d  22333  imasdsf1olem  22379  xaddeq0  29827  icorempt2  33510  infrpge  40065  infleinflem1  40084  xrre4  40136  climxrre  40485
  Copyright terms: Public domain W3C validator