Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  remullem Structured version   Visualization version   GIF version

Theorem remullem 14075
 Description: Lemma for remul 14076, immul 14083, and cjmul 14089. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))

Proof of Theorem remullem
StepHypRef Expression
1 replim 14063 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2 replim 14063 . . . . . 6 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
31, 2oveqan12d 6811 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
4 recl 14057 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54adantr 466 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65recnd 10269 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
7 ax-icn 10196 . . . . . . . 8 i ∈ ℂ
8 imcl 14058 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
98adantr 466 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
109recnd 10269 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
11 mulcl 10221 . . . . . . . 8 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
127, 10, 11sylancr 567 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
136, 12addcld 10260 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ)
14 recl 14057 . . . . . . . 8 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1514adantl 467 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1615recnd 10269 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
17 imcl 14058 . . . . . . . . 9 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1817adantl 467 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1918recnd 10269 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
20 mulcl 10221 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
217, 19, 20sylancr 567 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
2213, 16, 21adddid 10265 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))))
236, 12, 16adddird 10266 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
246, 12, 21adddird 10266 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
2523, 24oveq12d 6810 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
265, 15remulcld 10271 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
2726recnd 10269 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
2812, 21mulcld 10261 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) ∈ ℂ)
2912, 16mulcld 10261 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) ∈ ℂ)
306, 21mulcld 10261 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) ∈ ℂ)
3127, 28, 29, 30add42d 10466 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
327a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
3332, 10, 32, 19mul4d 10449 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))))
34 ixi 10857 . . . . . . . . . . . 12 (i · i) = -1
3534oveq1i 6802 . . . . . . . . . . 11 ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵)))
369, 18remulcld 10271 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
3736recnd 10269 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
3837mulm1d 10683 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
3935, 38syl5eq 2816 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4033, 39eqtrd 2804 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4140oveq2d 6808 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))))
4227, 37negsubd 10599 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
4341, 42eqtrd 2804 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
449, 15remulcld 10271 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
4544recnd 10269 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
46 mulcl 10221 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
477, 45, 46sylancr 567 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
485, 18remulcld 10271 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
4948recnd 10269 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
50 mulcl 10221 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
517, 49, 50sylancr 567 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
5247, 51addcomd 10439 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5332, 10, 16mulassd 10264 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) = (i · ((ℑ‘𝐴) · (ℜ‘𝐵))))
546, 32, 19mul12d 10446 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) = (i · ((ℜ‘𝐴) · (ℑ‘𝐵))))
5553, 54oveq12d 6810 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))))
5632, 49, 45adddid 10265 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5752, 55, 563eqtr4d 2814 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5843, 57oveq12d 6810 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
5925, 31, 583eqtr2d 2810 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
603, 22, 593eqtrd 2808 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
6160fveq2d 6336 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
6226, 36resubcld 10659 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ)
6348, 44readdcld 10270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ)
64 crre 14061 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6562, 63, 64syl2anc 565 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6661, 65eqtrd 2804 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6760fveq2d 6336 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
68 crim 14062 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
6962, 63, 68syl2anc 565 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
7067, 69eqtrd 2804 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
71 mulcl 10221 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
72 remim 14064 . . . 4 ((𝐴 · 𝐵) ∈ ℂ → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
7371, 72syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
74 remim 14064 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
75 remim 14064 . . . . 5 (𝐵 ∈ ℂ → (∗‘𝐵) = ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))
7674, 75oveqan12d 6811 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
7716, 21subcld 10593 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵) − (i · (ℑ‘𝐵))) ∈ ℂ)
786, 12, 77subdird 10688 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))))
7927, 30, 29, 28subadd4d 10641 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
806, 16, 21subdid 10687 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))))
8112, 16, 21subdid 10687 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8280, 81oveq12d 6810 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
8365, 61, 433eqtr4d 2814 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8470oveq2d 6808 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8554, 53oveq12d 6810 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8656, 84, 853eqtr4d 2814 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
8783, 86oveq12d 6810 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
8879, 82, 873eqtr4d 2814 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
8976, 78, 883eqtrd 2808 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
9073, 89eqtr4d 2807 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
9166, 70, 903jca 1121 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  ‘cfv 6031  (class class class)co 6792  ℂcc 10135  ℝcr 10136  1c1 10138  ici 10139   + caddc 10140   · cmul 10142   − cmin 10467  -cneg 10468  ∗ccj 14043  ℜcre 14044  ℑcim 14045 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-2 11280  df-cj 14046  df-re 14047  df-im 14048 This theorem is referenced by:  remul  14076  immul  14083  cjmul  14089
 Copyright terms: Public domain W3C validator