![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relwlk | Structured version Visualization version GIF version |
Description: The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
Ref | Expression |
---|---|
relwlk | ⊢ Rel (Walks‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wlks 26730 | . 2 ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | |
2 | 1 | relmptopab 7034 | 1 ⊢ Rel (Walks‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: if-wif 1049 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 ⊆ wss 3723 {csn 4317 {cpr 4319 dom cdm 5250 Rel wrel 5255 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 0cc0 10142 1c1 10143 + caddc 10145 ...cfz 12533 ..^cfzo 12673 ♯chash 13321 Word cword 13487 Vtxcvtx 26095 iEdgciedg 26096 Walkscwlks 26727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fv 6038 df-wlks 26730 |
This theorem is referenced by: wlkop 26758 istrl 26828 isclwlk 26904 |
Copyright terms: Public domain | W3C validator |