Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltrclfv Structured version   Visualization version   GIF version

Theorem reltrclfv 13802
 Description: The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
reltrclfv ((𝑅𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅))

Proof of Theorem reltrclfv
StepHypRef Expression
1 trclfvub 13792 . . . . 5 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
21adantr 480 . . . 4 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3 simpr 476 . . . . 5 ((𝑅𝑉 ∧ Rel 𝑅) → Rel 𝑅)
4 relssdmrn 5694 . . . . 5 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
5 ssequn1 3816 . . . . . 6 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
65biimpi 206 . . . . 5 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
73, 4, 63syl 18 . . . 4 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
82, 7sseqtrd 3674 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (dom 𝑅 × ran 𝑅))
9 xpss 5159 . . 3 (dom 𝑅 × ran 𝑅) ⊆ (V × V)
108, 9syl6ss 3648 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (V × V))
11 df-rel 5150 . 2 (Rel (t+‘𝑅) ↔ (t+‘𝑅) ⊆ (V × V))
1210, 11sylibr 224 1 ((𝑅𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  Vcvv 3231   ∪ cun 3605   ⊆ wss 3607   × cxp 5141  dom cdm 5143  ran crn 5144  Rel wrel 5148  ‘cfv 5926  t+ctcl 13770 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-iota 5889  df-fun 5928  df-fv 5934  df-trcl 13772 This theorem is referenced by:  frege124d  38370  frege129d  38372  frege133d  38374
 Copyright terms: Public domain W3C validator