![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version |
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3751 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
2 | df-rel 5273 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
3 | df-rel 5273 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
4 | 1, 2, 3 | 3imtr4g 285 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3340 ⊆ wss 3715 × cxp 5264 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-in 3722 df-ss 3729 df-rel 5273 |
This theorem is referenced by: relin1 5392 relin2 5393 reldif 5394 relres 5584 iss 5605 cnvdif 5697 difxp 5716 sofld 5739 funss 6068 funssres 6091 fliftcnv 6724 fliftfun 6725 frxp 7455 reltpos 7526 tpostpos 7541 swoer 7941 erinxp 7988 sbthcl 8247 fpwwe2lem8 9651 fpwwe2lem9 9652 fpwwe2lem12 9655 recmulnq 9978 prcdnq 10007 ltrel 10292 lerel 10294 dfle2 12173 dflt2 12174 pwsle 16354 isinv 16621 invsym2 16624 invfun 16625 oppcsect2 16640 oppcinv 16641 relfull 16769 relfth 16770 psss 17415 gicer 17919 gsum2d 18571 isunit 18857 opsrtoslem2 19687 txdis1cn 21640 hmpher 21789 tgphaus 22121 qustgplem 22125 tsmsxp 22159 xmeter 22439 ovoliunlem1 23470 taylf 24314 lgsquadlem1 25304 lgsquadlem2 25305 nvrel 27766 phrel 27979 bnrel 28032 hlrel 28055 elrn3 31959 sscoid 32326 trer 32616 fneer 32654 heicant 33757 iss2 34435 dvhopellsm 36908 diclspsn 36985 dih1dimatlem 37120 |
Copyright terms: Public domain | W3C validator |