![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsnopg | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by BJ, 12-Feb-2022.) |
Ref | Expression |
---|---|
relsnopg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Rel {〈𝐴, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5305 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
2 | opex 5060 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | relsng 5363 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ V → (Rel {〈𝐴, 𝐵〉} ↔ 〈𝐴, 𝐵〉 ∈ (V × V))) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel {〈𝐴, 𝐵〉} ↔ 〈𝐴, 𝐵〉 ∈ (V × V))) |
5 | 1, 4 | mpbird 247 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Rel {〈𝐴, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∈ wcel 2145 Vcvv 3351 {csn 4316 〈cop 4322 × cxp 5247 Rel wrel 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-opab 4847 df-xp 5255 df-rel 5256 |
This theorem is referenced by: relsnop 5367 cnvsng 5758 |
Copyright terms: Public domain | W3C validator |