![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version |
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
relres | ⊢ Rel (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5155 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss2 3867 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
3 | 1, 2 | eqsstri 3668 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
4 | relxp 5160 | . 2 ⊢ Rel (𝐵 × V) | |
5 | relss 5240 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3231 ∩ cin 3606 ⊆ wss 3607 × cxp 5141 ↾ cres 5145 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-in 3614 df-ss 3621 df-opab 4746 df-xp 5149 df-rel 5150 df-res 5155 |
This theorem is referenced by: elres 5470 iss 5482 dfres2 5488 restidsing 5493 restidsingOLD 5494 issref 5544 asymref 5547 poirr2 5555 cnvcnvres 5633 resco 5677 coeq0 5682 ressn 5709 funssres 5968 fnresdisj 6039 fnres 6045 fresaunres2 6114 fcnvres 6120 nfunsn 6263 dffv2 6310 fsnunfv 6494 resiexg 7144 resfunexgALT 7171 domss2 8160 fidomdm 8284 dmct 9384 relexp0rel 13821 setsres 15948 pospo 17020 metustid 22406 ovoliunlem1 23316 dvres 23720 dvres2 23721 dvlog 24442 efopnlem2 24448 h2hlm 27965 hlimcaui 28221 funresdm1 29542 dfpo2 31771 eqfunresadj 31785 dfrdg2 31825 funpartfun 32175 brres2 34176 elecres 34183 br1cnvssrres 34395 mapfzcons1 37597 diophrw 37639 eldioph2lem1 37640 eldioph2lem2 37641 undmrnresiss 38227 rtrclexi 38245 brfvrcld2 38301 relexpiidm 38313 rp-imass 38382 idhe 38398 limsupresuz 40253 liminfresuz 40334 funressnfv 41529 dfdfat2 41532 setrec2lem2 42766 |
Copyright terms: Public domain | W3C validator |