MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relprcnfsupp Structured version   Visualization version   GIF version

Theorem relprcnfsupp 8319
Description: A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.)
Assertion
Ref Expression
relprcnfsupp 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍)

Proof of Theorem relprcnfsupp
StepHypRef Expression
1 relfsupp 8318 . . 3 Rel finSupp
21brrelexi 5192 . 2 (𝐴 finSupp 𝑍𝐴 ∈ V)
32con3i 150 1 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2030  Vcvv 3231   class class class wbr 4685   finSupp cfsupp 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-fsupp 8317
This theorem is referenced by:  fsuppres  8341
  Copyright terms: Public domain W3C validator