![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relprcnfsupp | Structured version Visualization version GIF version |
Description: A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
relprcnfsupp | ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfsupp 8318 | . . 3 ⊢ Rel finSupp | |
2 | 1 | brrelexi 5192 | . 2 ⊢ (𝐴 finSupp 𝑍 → 𝐴 ∈ V) |
3 | 2 | con3i 150 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2030 Vcvv 3231 class class class wbr 4685 finSupp cfsupp 8316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-fsupp 8317 |
This theorem is referenced by: fsuppres 8341 |
Copyright terms: Public domain | W3C validator |