![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopab | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) Removed DV restrictions. (Revised by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
relopab | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2752 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | relopabi 5393 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {copab 4856 Rel wrel 5263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-opab 4857 df-xp 5264 df-rel 5265 |
This theorem is referenced by: opabid2 5399 inopab 5400 difopab 5401 dfres2 5603 cnvopab 5683 funopab 6076 relmptopab 7040 elopabi 7391 relmpt2opab 7419 shftfn 14004 cicer 16659 joindmss 17200 meetdmss 17214 lgsquadlem3 25298 perpln1 25796 perpln2 25797 fpwrelmapffslem 29808 fpwrelmap 29809 relfae 30611 vvdifopab 34340 inxprnres 34376 prtlem12 34648 dicvalrelN 36968 diclspsn 36977 dih1dimatlem 37112 rfovcnvf1od 38792 |
Copyright terms: Public domain | W3C validator |