![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relnonrel | Structured version Visualization version GIF version |
Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
relnonrel | ⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 5724 | . . 3 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
2 | eqss 3767 | . . 3 ⊢ (◡◡𝐴 = 𝐴 ↔ (◡◡𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡◡𝐴)) | |
3 | 1, 2 | bitri 264 | . 2 ⊢ (Rel 𝐴 ↔ (◡◡𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡◡𝐴)) |
4 | cnvcnvss 5730 | . . 3 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
5 | 4 | biantrur 520 | . 2 ⊢ (𝐴 ⊆ ◡◡𝐴 ↔ (◡◡𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡◡𝐴)) |
6 | ssdif0 4089 | . 2 ⊢ (𝐴 ⊆ ◡◡𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) | |
7 | 3, 5, 6 | 3bitr2i 288 | 1 ⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∖ cdif 3720 ⊆ wss 3723 ∅c0 4063 ◡ccnv 5248 Rel wrel 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-xp 5255 df-rel 5256 df-cnv 5257 |
This theorem is referenced by: cnvnonrel 38420 |
Copyright terms: Public domain | W3C validator |