![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relintab | Structured version Visualization version GIF version |
Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
relintab | ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 5744 | . . 3 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) | |
2 | incom 3948 | . . 3 ⊢ (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | eqtri 2782 | . 2 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) |
4 | dfrel2 5741 | . . 3 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} ↔ ◡◡∩ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | |
5 | 4 | biimpi 206 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ◡◡∩ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
6 | relintabex 38389 | . . . 4 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | |
7 | 6 | xpinintabd 38388 | . . 3 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)}) |
8 | incom 3948 | . . . . . . . . 9 ⊢ ((V × V) ∩ 𝑥) = (𝑥 ∩ (V × V)) | |
9 | cnvcnv 5744 | . . . . . . . . 9 ⊢ ◡◡𝑥 = (𝑥 ∩ (V × V)) | |
10 | 8, 9 | eqtr4i 2785 | . . . . . . . 8 ⊢ ((V × V) ∩ 𝑥) = ◡◡𝑥 |
11 | 10 | eqeq2i 2772 | . . . . . . 7 ⊢ (𝑤 = ((V × V) ∩ 𝑥) ↔ 𝑤 = ◡◡𝑥) |
12 | 11 | anbi1i 733 | . . . . . 6 ⊢ ((𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ (𝑤 = ◡◡𝑥 ∧ 𝜑)) |
13 | 12 | exbii 1923 | . . . . 5 ⊢ (∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)) |
14 | 13 | rabbii 3325 | . . . 4 ⊢ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)} |
15 | 14 | inteqi 4631 | . . 3 ⊢ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)} |
16 | 7, 15 | syl6eq 2810 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
17 | 3, 5, 16 | 3eqtr3a 2818 | 1 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∃wex 1853 {cab 2746 {crab 3054 Vcvv 3340 ∩ cin 3714 𝒫 cpw 4302 ∩ cint 4627 × cxp 5264 ◡ccnv 5265 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-int 4628 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |