Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin2 Structured version   Visualization version   GIF version

Theorem relin2 5393
 Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
relin2 (Rel 𝐵 → Rel (𝐴𝐵))

Proof of Theorem relin2
StepHypRef Expression
1 inss2 3977 . 2 (𝐴𝐵) ⊆ 𝐵
2 relss 5363 . 2 ((𝐴𝐵) ⊆ 𝐵 → (Rel 𝐵 → Rel (𝐴𝐵)))
31, 2ax-mp 5 1 (Rel 𝐵 → Rel (𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∩ cin 3714   ⊆ wss 3715  Rel wrel 5271 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-v 3342  df-in 3722  df-ss 3729  df-rel 5273 This theorem is referenced by:  intasym  5669  asymref  5670  poirr2  5678  brdom3  9562  brdom5  9563  brdom4  9564  inxprnres  34402  relinxp  34411  clcnvlem  38450
 Copyright terms: Public domain W3C validator