![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relin2 | Structured version Visualization version GIF version |
Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
relin2 | ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3977 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
2 | relss 5363 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 → (Rel 𝐵 → Rel (𝐴 ∩ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3714 ⊆ wss 3715 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 df-rel 5273 |
This theorem is referenced by: intasym 5669 asymref 5670 poirr2 5678 brdom3 9562 brdom5 9563 brdom4 9564 inxprnres 34402 relinxp 34411 clcnvlem 38450 |
Copyright terms: Public domain | W3C validator |