![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relimasn | Structured version Visualization version GIF version |
Description: The image of a singleton. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
relimasn | ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4285 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | imaeq2 5497 | . . . . . . 7 ⊢ ({𝐴} = ∅ → (𝑅 “ {𝐴}) = (𝑅 “ ∅)) | |
3 | 1, 2 | sylbi 207 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = (𝑅 “ ∅)) |
4 | ima0 5516 | . . . . . 6 ⊢ (𝑅 “ ∅) = ∅ | |
5 | 3, 4 | syl6eq 2701 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = ∅) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = ∅) |
7 | brrelex 5190 | . . . . . . 7 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝑦) → 𝐴 ∈ V) | |
8 | 7 | stoic1a 1737 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝑦) |
9 | 8 | nexdv 1904 | . . . . 5 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ ∃𝑦 𝐴𝑅𝑦) |
10 | abn0 3987 | . . . . . 6 ⊢ ({𝑦 ∣ 𝐴𝑅𝑦} ≠ ∅ ↔ ∃𝑦 𝐴𝑅𝑦) | |
11 | 10 | necon1bbii 2872 | . . . . 5 ⊢ (¬ ∃𝑦 𝐴𝑅𝑦 ↔ {𝑦 ∣ 𝐴𝑅𝑦} = ∅) |
12 | 9, 11 | sylib 208 | . . . 4 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → {𝑦 ∣ 𝐴𝑅𝑦} = ∅) |
13 | 6, 12 | eqtr4d 2688 | . . 3 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
14 | 13 | ex 449 | . 2 ⊢ (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦})) |
15 | imasng 5522 | . 2 ⊢ (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | |
16 | 14, 15 | pm2.61d2 172 | 1 ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {cab 2637 Vcvv 3231 ∅c0 3948 {csn 4210 class class class wbr 4685 “ cima 5146 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 |
This theorem is referenced by: elrelimasn 5524 predep 5744 fnsnfv 6297 funfv2 6305 mapsn 7941 nznngen 38832 nzss 38833 hashnzfz 38836 mapsnd 39702 |
Copyright terms: Public domain | W3C validator |