![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version |
Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
relfunc | ⊢ Rel (𝐷 Func 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 16719 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑𝑚 ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | relmpt2opab 7427 | 1 ⊢ Rel (𝐷 Func 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 [wsbc 3576 〈cop 4327 × cxp 5264 Rel wrel 5271 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 1st c1st 7331 2nd c2nd 7332 ↑𝑚 cmap 8023 Xcixp 8074 Basecbs 16059 Hom chom 16154 compcco 16155 Catccat 16526 Idccid 16527 Func cfunc 16715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-func 16719 |
This theorem is referenced by: cofuval 16743 cofu1 16745 cofu2 16747 cofuval2 16748 cofucl 16749 cofuass 16750 cofulid 16751 cofurid 16752 funcres 16757 funcres2 16759 wunfunc 16760 funcpropd 16761 relfull 16769 relfth 16770 isfull 16771 isfth 16775 idffth 16794 cofull 16795 cofth 16796 ressffth 16799 isnat 16808 isnat2 16809 nat1st2nd 16812 fuccocl 16825 fucidcl 16826 fuclid 16827 fucrid 16828 fucass 16829 fucsect 16833 fucinv 16834 invfuc 16835 fuciso 16836 natpropd 16837 fucpropd 16838 catciso 16958 prfval 17040 prfcl 17044 prf1st 17045 prf2nd 17046 1st2ndprf 17047 evlfcllem 17062 evlfcl 17063 curf1cl 17069 curf2cl 17072 curfcl 17073 uncf1 17077 uncf2 17078 curfuncf 17079 uncfcurf 17080 diag1cl 17083 diag2cl 17087 curf2ndf 17088 yon1cl 17104 oyon1cl 17112 yonedalem1 17113 yonedalem21 17114 yonedalem3a 17115 yonedalem4c 17118 yonedalem22 17119 yonedalem3b 17120 yonedalem3 17121 yonedainv 17122 yonffthlem 17123 yoniso 17126 |
Copyright terms: Public domain | W3C validator |