MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucnnr Structured version   Visualization version   GIF version

Theorem relexpsucnnr 13809
Description: A reduction for relation exponentiation to the right. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexpsucnnr ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))

Proof of Theorem relexpsucnnr
Dummy variables 𝑎 𝑏 𝑧 𝑛 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2652 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
2 simprr 811 . . . . 5 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = (𝑁 + 1))) → 𝑛 = (𝑁 + 1))
3 dmeq 5356 . . . . . . . . . . 11 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
4 rneq 5383 . . . . . . . . . . 11 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
53, 4uneq12d 3801 . . . . . . . . . 10 (𝑟 = 𝑅 → (dom 𝑟 ∪ ran 𝑟) = (dom 𝑅 ∪ ran 𝑅))
65reseq2d 5428 . . . . . . . . 9 (𝑟 = 𝑅 → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
7 eqidd 2652 . . . . . . . . . . 11 (𝑟 = 𝑅 → 1 = 1)
8 coeq2 5313 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝑥𝑟) = (𝑥𝑅))
98mpt2eq3dv 6763 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)))
10 id 22 . . . . . . . . . . . 12 (𝑟 = 𝑅𝑟 = 𝑅)
1110mpteq2dv 4778 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅))
127, 9, 11seqeq123d 12850 . . . . . . . . . 10 (𝑟 = 𝑅 → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅)))
1312fveq1d 6231 . . . . . . . . 9 (𝑟 = 𝑅 → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))
146, 13ifeq12d 4139 . . . . . . . 8 (𝑟 = 𝑅 → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))
1514ad2antrl 764 . . . . . . 7 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))
1615a1i 11 . . . . . 6 (𝑛 = (𝑁 + 1) → (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))))
17 eqeq1 2655 . . . . . . . 8 (𝑛 = (𝑁 + 1) → (𝑛 = (𝑁 + 1) ↔ (𝑁 + 1) = (𝑁 + 1)))
1817anbi2d 740 . . . . . . 7 (𝑛 = (𝑁 + 1) → ((𝑟 = 𝑅𝑛 = (𝑁 + 1)) ↔ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))))
1918anbi2d 740 . . . . . 6 (𝑛 = (𝑁 + 1) → (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = (𝑁 + 1))) ↔ ((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1)))))
20 eqeq1 2655 . . . . . . . 8 (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0))
21 fveq2 6229 . . . . . . . 8 (𝑛 = (𝑁 + 1) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1)))
2220, 21ifbieq2d 4144 . . . . . . 7 (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))))
2322eqeq1d 2653 . . . . . 6 (𝑛 = (𝑁 + 1) → (if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) ↔ if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))))
2416, 19, 233imtr4d 283 . . . . 5 (𝑛 = (𝑁 + 1) → (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = (𝑁 + 1))) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))))
252, 24mpcom 38 . . . 4 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = (𝑁 + 1))) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))
26 elex 3243 . . . . 5 (𝑅𝑉𝑅 ∈ V)
2726adantr 480 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑅 ∈ V)
28 simpr 476 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2928peano2nnd 11075 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
3029nnnn0d 11389 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ0)
31 dmexg 7139 . . . . . . . 8 (𝑅𝑉 → dom 𝑅 ∈ V)
32 rnexg 7140 . . . . . . . 8 (𝑅𝑉 → ran 𝑅 ∈ V)
33 unexg 7001 . . . . . . . 8 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
3431, 32, 33syl2anc 694 . . . . . . 7 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
35 resiexg 7144 . . . . . . 7 ((dom 𝑅 ∪ ran 𝑅) ∈ V → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
3634, 35syl 17 . . . . . 6 (𝑅𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
3736adantr 480 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
38 fvexd 6241 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) ∈ V)
3937, 38ifcld 4164 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) ∈ V)
401, 25, 27, 30, 39ovmpt2d 6830 . . 3 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))
41 nnne0 11091 . . . . . 6 ((𝑁 + 1) ∈ ℕ → (𝑁 + 1) ≠ 0)
4241neneqd 2828 . . . . 5 ((𝑁 + 1) ∈ ℕ → ¬ (𝑁 + 1) = 0)
4329, 42syl 17 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → ¬ (𝑁 + 1) = 0)
4443iffalsed 4130 . . 3 ((𝑅𝑉𝑁 ∈ ℕ) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))
45 elnnuz 11762 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
4645biimpi 206 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
4746adantl 481 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
48 seqp1 12856 . . . . 5 (𝑁 ∈ (ℤ‘1) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1))))
4947, 48syl 17 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1))))
50 ovex 6718 . . . . . 6 (𝑁 + 1) ∈ V
51 simpl 472 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑅𝑉)
52 eqidd 2652 . . . . . . 7 (𝑧 = (𝑁 + 1) → 𝑅 = 𝑅)
53 eqid 2651 . . . . . . 7 (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅)
5452, 53fvmptg 6319 . . . . . 6 (((𝑁 + 1) ∈ V ∧ 𝑅𝑉) → ((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)) = 𝑅)
5550, 51, 54sylancr 696 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)) = 𝑅)
5655oveq2d 6706 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1))) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))𝑅))
57 nfcv 2793 . . . . . . 7 𝑎(𝑥𝑅)
58 nfcv 2793 . . . . . . 7 𝑏(𝑥𝑅)
59 nfcv 2793 . . . . . . 7 𝑥(𝑎𝑅)
60 nfcv 2793 . . . . . . 7 𝑦(𝑎𝑅)
61 simpl 472 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
6261coeq1d 5316 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑅) = (𝑎𝑅))
6357, 58, 59, 60, 62cbvmpt2 6776 . . . . . 6 (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅))
64 oveq 6696 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅)) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅))𝑅))
6563, 64mp1i 13 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅))𝑅))
66 eqidd 2652 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅)))
67 simprl 809 . . . . . . 7 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∧ 𝑏 = 𝑅)) → 𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))
6867coeq1d 5316 . . . . . 6 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∧ 𝑏 = 𝑅)) → (𝑎𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅))
69 fvexd 6241 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V)
70 fvex 6239 . . . . . . 7 (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V
71 coexg 7159 . . . . . . 7 (((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V ∧ 𝑅𝑉) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) ∈ V)
7270, 51, 71sylancr 696 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) ∈ V)
7366, 68, 69, 27, 72ovmpt2d 6830 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅))
74 simpr 476 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑛 = 𝑁) → 𝑛 = 𝑁)
7574eqeq1d 2653 . . . . . . . . . 10 ((𝑟 = 𝑅𝑛 = 𝑁) → (𝑛 = 0 ↔ 𝑁 = 0))
766adantr 480 . . . . . . . . . 10 ((𝑟 = 𝑅𝑛 = 𝑁) → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
7712adantr 480 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑛 = 𝑁) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅)))
7877, 74fveq12d 6235 . . . . . . . . . 10 ((𝑟 = 𝑅𝑛 = 𝑁) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))
7975, 76, 78ifbieq12d 4146 . . . . . . . . 9 ((𝑟 = 𝑅𝑛 = 𝑁) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)))
8079adantl 481 . . . . . . . 8 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = 𝑁)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)))
8128nnnn0d 11389 . . . . . . . 8 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
8237, 69ifcld 4164 . . . . . . . 8 ((𝑅𝑉𝑁 ∈ ℕ) → if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) ∈ V)
831, 80, 27, 81, 82ovmpt2d 6830 . . . . . . 7 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)))
84 nnne0 11091 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8584adantl 481 . . . . . . . . 9 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑁 ≠ 0)
8685neneqd 2828 . . . . . . . 8 ((𝑅𝑉𝑁 ∈ ℕ) → ¬ 𝑁 = 0)
8786iffalsed 4130 . . . . . . 7 ((𝑅𝑉𝑁 ∈ ℕ) → if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))
8883, 87eqtr2d 2686 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁))
8988coeq1d 5316 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
9065, 73, 893eqtrd 2689 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
9149, 56, 903eqtrd 2689 . . 3 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
9240, 44, 913eqtrd 2689 . 2 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
93 df-relexp 13805 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
94 oveq 6696 . . . . 5 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅𝑟(𝑁 + 1)) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)))
95 oveq 6696 . . . . . 6 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅𝑟𝑁) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁))
9695coeq1d 5316 . . . . 5 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑟𝑁) ∘ 𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
9794, 96eqeq12d 2666 . . . 4 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅) ↔ (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)))
9897imbi2d 329 . . 3 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)) ↔ ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))))
9993, 98ax-mp 5 . 2 (((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)) ↔ ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)))
10092, 99mpbir 221 1 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  cun 3605  ifcif 4119  cmpt 4762   I cid 5052  dom cdm 5143  ran crn 5144  cres 5145  ccom 5147  cfv 5926  (class class class)co 6690  cmpt2 6692  0cc0 9974  1c1 9975   + caddc 9977  cn 11058  0cn0 11330  cuz 11725  seqcseq 12841  𝑟crelexp 13804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-relexp 13805
This theorem is referenced by:  relexpsucr  13813  relexpsucnnl  13816  relexpcnv  13819  relexprelg  13822  relexpnndm  13825  relexp2  38286  relexpxpnnidm  38312  relexpss1d  38314  relexpmulnn  38318  trclrelexplem  38320  relexp0a  38325  trclfvcom  38332  cotrcltrcl  38334  trclfvdecomr  38337  cotrclrcl  38351
  Copyright terms: Public domain W3C validator