Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpss1d Structured version   Visualization version   GIF version

Theorem relexpss1d 38516
 Description: The relational power of a subset is a subset. (Contributed by RP, 17-Jun-2020.)
Hypotheses
Ref Expression
relexpss1d.a (𝜑𝐴𝐵)
relexpss1d.b (𝜑𝐵 ∈ V)
relexpss1d.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
relexpss1d (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))

Proof of Theorem relexpss1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relexpss1d.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 elnn0 11495 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
31, 2sylib 208 . 2 (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4 oveq2 6800 . . . . . 6 (𝑥 = 1 → (𝐴𝑟𝑥) = (𝐴𝑟1))
5 oveq2 6800 . . . . . 6 (𝑥 = 1 → (𝐵𝑟𝑥) = (𝐵𝑟1))
64, 5sseq12d 3781 . . . . 5 (𝑥 = 1 → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟1) ⊆ (𝐵𝑟1)))
76imbi2d 329 . . . 4 (𝑥 = 1 → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟1) ⊆ (𝐵𝑟1))))
8 oveq2 6800 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑟𝑥) = (𝐴𝑟𝑦))
9 oveq2 6800 . . . . . 6 (𝑥 = 𝑦 → (𝐵𝑟𝑥) = (𝐵𝑟𝑦))
108, 9sseq12d 3781 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)))
1110imbi2d 329 . . . 4 (𝑥 = 𝑦 → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦))))
12 oveq2 6800 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐴𝑟𝑥) = (𝐴𝑟(𝑦 + 1)))
13 oveq2 6800 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐵𝑟𝑥) = (𝐵𝑟(𝑦 + 1)))
1412, 13sseq12d 3781 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1))))
1514imbi2d 329 . . . 4 (𝑥 = (𝑦 + 1) → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))))
16 oveq2 6800 . . . . . 6 (𝑥 = 𝑁 → (𝐴𝑟𝑥) = (𝐴𝑟𝑁))
17 oveq2 6800 . . . . . 6 (𝑥 = 𝑁 → (𝐵𝑟𝑥) = (𝐵𝑟𝑁))
1816, 17sseq12d 3781 . . . . 5 (𝑥 = 𝑁 → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
1918imbi2d 329 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))))
20 relexpss1d.a . . . . 5 (𝜑𝐴𝐵)
21 relexpss1d.b . . . . . . 7 (𝜑𝐵 ∈ V)
2221, 20ssexd 4936 . . . . . 6 (𝜑𝐴 ∈ V)
2322relexp1d 13978 . . . . 5 (𝜑 → (𝐴𝑟1) = 𝐴)
2421relexp1d 13978 . . . . 5 (𝜑 → (𝐵𝑟1) = 𝐵)
2520, 23, 243sstr4d 3795 . . . 4 (𝜑 → (𝐴𝑟1) ⊆ (𝐵𝑟1))
26 simp3 1131 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦))
27203ad2ant2 1127 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝐴𝐵)
2826, 27coss12d 13920 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ ((𝐵𝑟𝑦) ∘ 𝐵))
29223ad2ant2 1127 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝐴 ∈ V)
30 simp1 1129 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝑦 ∈ ℕ)
31 relexpsucnnr 13972 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐴𝑟(𝑦 + 1)) = ((𝐴𝑟𝑦) ∘ 𝐴))
3229, 30, 31syl2anc 565 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐴𝑟(𝑦 + 1)) = ((𝐴𝑟𝑦) ∘ 𝐴))
33213ad2ant2 1127 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝐵 ∈ V)
34 relexpsucnnr 13972 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐵𝑟(𝑦 + 1)) = ((𝐵𝑟𝑦) ∘ 𝐵))
3533, 30, 34syl2anc 565 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐵𝑟(𝑦 + 1)) = ((𝐵𝑟𝑦) ∘ 𝐵))
3628, 32, 353sstr4d 3795 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))
37363exp 1111 . . . . 5 (𝑦 ∈ ℕ → (𝜑 → ((𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦) → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))))
3837a2d 29 . . . 4 (𝑦 ∈ ℕ → ((𝜑 → (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝜑 → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))))
397, 11, 15, 19, 25, 38nnind 11239 . . 3 (𝑁 ∈ ℕ → (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
40 simpr 471 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → 𝜑)
41 dmss 5461 . . . . . . . 8 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
42 rnss 5492 . . . . . . . 8 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
4341, 42jca 495 . . . . . . 7 (𝐴𝐵 → (dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵))
44 unss12 3934 . . . . . . 7 ((dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵) → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵))
4520, 43, 443syl 18 . . . . . 6 (𝜑 → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵))
46 ssres2 5566 . . . . . 6 ((dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
4740, 45, 463syl 18 . . . . 5 ((𝑁 = 0 ∧ 𝜑) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
48 simpl 468 . . . . . . 7 ((𝑁 = 0 ∧ 𝜑) → 𝑁 = 0)
4948oveq2d 6808 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟𝑁) = (𝐴𝑟0))
50 relexp0g 13969 . . . . . . 7 (𝐴 ∈ V → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
5140, 22, 503syl 18 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
5249, 51eqtrd 2804 . . . . 5 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟𝑁) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
5348oveq2d 6808 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐵𝑟𝑁) = (𝐵𝑟0))
54 relexp0g 13969 . . . . . . 7 (𝐵 ∈ V → (𝐵𝑟0) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
5540, 21, 543syl 18 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐵𝑟0) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
5653, 55eqtrd 2804 . . . . 5 ((𝑁 = 0 ∧ 𝜑) → (𝐵𝑟𝑁) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
5747, 52, 563sstr4d 3795 . . . 4 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))
5857ex 397 . . 3 (𝑁 = 0 → (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
5939, 58jaoi 837 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
603, 59mpcom 38 1 (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∨ wo 826   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  Vcvv 3349   ∪ cun 3719   ⊆ wss 3721   I cid 5156  dom cdm 5249  ran crn 5250   ↾ cres 5251   ∘ ccom 5253  (class class class)co 6792  0cc0 10137  1c1 10138   + caddc 10140  ℕcn 11221  ℕ0cn0 11493  ↑𝑟crelexp 13967 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-seq 13008  df-relexp 13968 This theorem is referenced by:  corcltrcl  38550  cotrclrcl  38553
 Copyright terms: Public domain W3C validator