![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexpnndm | Structured version Visualization version GIF version |
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexpnndm | ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6823 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
2 | 1 | dmeqd 5482 | . . . . 5 ⊢ (𝑛 = 1 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟1)) |
3 | 2 | sseq1d 3774 | . . . 4 ⊢ (𝑛 = 1 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟1) ⊆ dom 𝑅)) |
4 | 3 | imbi2d 329 | . . 3 ⊢ (𝑛 = 1 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) ⊆ dom 𝑅))) |
5 | oveq2 6823 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑚)) | |
6 | 5 | dmeqd 5482 | . . . . 5 ⊢ (𝑛 = 𝑚 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟𝑚)) |
7 | 6 | sseq1d 3774 | . . . 4 ⊢ (𝑛 = 𝑚 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅)) |
8 | 7 | imbi2d 329 | . . 3 ⊢ (𝑛 = 𝑚 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅))) |
9 | oveq2 6823 | . . . . . 6 ⊢ (𝑛 = (𝑚 + 1) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑚 + 1))) | |
10 | 9 | dmeqd 5482 | . . . . 5 ⊢ (𝑛 = (𝑚 + 1) → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟(𝑚 + 1))) |
11 | 10 | sseq1d 3774 | . . . 4 ⊢ (𝑛 = (𝑚 + 1) → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅)) |
12 | 11 | imbi2d 329 | . . 3 ⊢ (𝑛 = (𝑚 + 1) → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
13 | oveq2 6823 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑁)) | |
14 | 13 | dmeqd 5482 | . . . . 5 ⊢ (𝑛 = 𝑁 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟𝑁)) |
15 | 14 | sseq1d 3774 | . . . 4 ⊢ (𝑛 = 𝑁 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅)) |
16 | 15 | imbi2d 329 | . . 3 ⊢ (𝑛 = 𝑁 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅))) |
17 | relexp1g 13986 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | |
18 | 17 | dmeqd 5482 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) = dom 𝑅) |
19 | eqimss 3799 | . . . 4 ⊢ (dom (𝑅↑𝑟1) = dom 𝑅 → dom (𝑅↑𝑟1) ⊆ dom 𝑅) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) ⊆ dom 𝑅) |
21 | relexpsucnnr 13985 | . . . . . . . . 9 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) | |
22 | 21 | ancoms 468 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
23 | 22 | dmeqd 5482 | . . . . . . 7 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟(𝑚 + 1)) = dom ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
24 | dmcoss 5541 | . . . . . . 7 ⊢ dom ((𝑅↑𝑟𝑚) ∘ 𝑅) ⊆ dom 𝑅 | |
25 | 23, 24 | syl6eqss 3797 | . . . . . 6 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅) |
26 | 25 | a1d 25 | . . . . 5 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅)) |
27 | 26 | ex 449 | . . . 4 ⊢ (𝑚 ∈ ℕ → (𝑅 ∈ 𝑉 → (dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
28 | 27 | a2d 29 | . . 3 ⊢ (𝑚 ∈ ℕ → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅) → (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
29 | 4, 8, 12, 16, 20, 28 | nnind 11251 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅)) |
30 | 29 | imp 444 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ⊆ wss 3716 dom cdm 5267 ∘ ccom 5271 (class class class)co 6815 1c1 10150 + caddc 10152 ℕcn 11233 ↑𝑟crelexp 13980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-n0 11506 df-z 11591 df-uz 11901 df-seq 13017 df-relexp 13981 |
This theorem is referenced by: relexpdmg 14002 relexpnnrn 14005 relexpfld 14009 relexpaddg 14013 relexpaddss 38531 |
Copyright terms: Public domain | W3C validator |