![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relexp1idm | Structured version Visualization version GIF version |
Description: Repeated raising a relation to the first power is idempotent. (Contributed by RP, 12-Jun-2020.) |
Ref | Expression |
---|---|
relexp1idm | ⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1)↑𝑟1) = (𝑅↑𝑟1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifid 4261 | . . . 4 ⊢ if(1 < 1, 1, 1) = 1 | |
2 | 1 | eqcomi 2778 | . . 3 ⊢ 1 = if(1 < 1, 1, 1) |
3 | 2 | jctr 567 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ 𝑉 ∧ 1 = if(1 < 1, 1, 1))) |
4 | 1ex 10235 | . . . 4 ⊢ 1 ∈ V | |
5 | 4 | prid2 4431 | . . 3 ⊢ 1 ∈ {0, 1} |
6 | 5, 5 | pm3.2i 471 | . 2 ⊢ (1 ∈ {0, 1} ∧ 1 ∈ {0, 1}) |
7 | relexp01min 38531 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 1 = if(1 < 1, 1, 1)) ∧ (1 ∈ {0, 1} ∧ 1 ∈ {0, 1})) → ((𝑅↑𝑟1)↑𝑟1) = (𝑅↑𝑟1)) | |
8 | 3, 6, 7 | sylancl 694 | 1 ⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1)↑𝑟1) = (𝑅↑𝑟1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1629 ∈ wcel 2143 ifcif 4222 {cpr 4315 class class class wbr 4783 (class class class)co 6791 0cc0 10136 1c1 10137 < clt 10274 ↑𝑟crelexp 13971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-n0 11493 df-z 11578 df-uz 11888 df-seq 13009 df-relexp 13972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |