![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexp0rel | Structured version Visualization version GIF version |
Description: The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexp0rel | ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5585 | . 2 ⊢ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)) | |
2 | relexp0g 13982 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
3 | 2 | releqd 5361 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Rel (𝑅↑𝑟0) ↔ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
4 | 1, 3 | mpbiri 248 | 1 ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2140 ∪ cun 3714 I cid 5174 dom cdm 5267 ran crn 5268 ↾ cres 5269 Rel wrel 5272 (class class class)co 6815 0cc0 10149 ↑𝑟crelexp 13980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-mulcl 10211 ax-i2m1 10217 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-iota 6013 df-fun 6052 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-n0 11506 df-relexp 13981 |
This theorem is referenced by: relexprelg 13998 relexpaddg 14013 |
Copyright terms: Public domain | W3C validator |