MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0g Structured version   Visualization version   GIF version

Theorem relexp0g 13970
Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp0g (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))

Proof of Theorem relexp0g
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2772 . . 3 (𝑅𝑉 → (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
2 simprr 756 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → 𝑛 = 0)
32iftrued 4233 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = ( I ↾ (dom 𝑟 ∪ ran 𝑟)))
4 dmeq 5462 . . . . . . 7 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
5 rneq 5489 . . . . . . 7 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
64, 5uneq12d 3919 . . . . . 6 (𝑟 = 𝑅 → (dom 𝑟 ∪ ran 𝑟) = (dom 𝑅 ∪ ran 𝑅))
76reseq2d 5534 . . . . 5 (𝑟 = 𝑅 → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
87ad2antrl 707 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
93, 8eqtrd 2805 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
10 elex 3364 . . 3 (𝑅𝑉𝑅 ∈ V)
11 0nn0 11509 . . . 4 0 ∈ ℕ0
1211a1i 11 . . 3 (𝑅𝑉 → 0 ∈ ℕ0)
13 dmexg 7244 . . . . 5 (𝑅𝑉 → dom 𝑅 ∈ V)
14 rnexg 7245 . . . . 5 (𝑅𝑉 → ran 𝑅 ∈ V)
15 unexg 7106 . . . . 5 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
1613, 14, 15syl2anc 573 . . . 4 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
17 resiexg 7249 . . . 4 ((dom 𝑅 ∪ ran 𝑅) ∈ V → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
1816, 17syl 17 . . 3 (𝑅𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
191, 9, 10, 12, 18ovmpt2d 6935 . 2 (𝑅𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
20 df-relexp 13969 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21 oveq 6799 . . . . 5 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅𝑟0) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0))
2221eqeq1d 2773 . . . 4 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
2322imbi2d 329 . . 3 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ↔ (𝑅𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
2420, 23ax-mp 5 . 2 ((𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ↔ (𝑅𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
2519, 24mpbir 221 1 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  cun 3721  ifcif 4225  cmpt 4863   I cid 5156  dom cdm 5249  ran crn 5250  cres 5251  ccom 5253  cfv 6031  (class class class)co 6793  cmpt2 6795  0cc0 10138  1c1 10139  0cn0 11494  seqcseq 13008  𝑟crelexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-mulcl 10200  ax-i2m1 10206
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-n0 11495  df-relexp 13969
This theorem is referenced by:  relexp0  13971  relexpcnv  13983  relexp0rel  13985  relexpdmg  13990  relexprng  13994  relexpfld  13997  relexpaddg  14001  dfrcl3  38493  fvmptiunrelexplb0d  38502  brfvrcld2  38510  relexp0eq  38519  iunrelexp0  38520  relexpiidm  38522  relexpss1d  38523  relexpmulg  38528  iunrelexpmin2  38530  relexp01min  38531  relexp0a  38534  relexpxpmin  38535  relexpaddss  38536  dfrtrcl3  38551  cotrclrcl  38560
  Copyright terms: Public domain W3C validator