![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | releq 5358 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-in 3722 df-ss 3729 df-rel 5273 |
This theorem is referenced by: reliun 5395 reluni 5397 relint 5398 reldmmpt2 6937 wfrrel 7590 tfrlem6 7648 relsdom 8130 cda1dif 9210 0rest 16312 firest 16315 2oppchomf 16605 oppchofcl 17121 oyoncl 17131 releqg 17862 reldvdsr 18864 restbas 21184 hlimcaui 28423 frrlem6 32116 relbigcup 32331 fnsingle 32353 funimage 32362 colinrel 32491 cnfinltrel 33570 relcoels 34520 neicvgnvor 38934 xlimrel 40567 |
Copyright terms: Public domain | W3C validator |