![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version |
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | releq 5341 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 Rel wrel 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-in 3728 df-ss 3735 df-rel 5256 |
This theorem is referenced by: dftpos3 7521 tposfo2 7526 tposf12 7528 relexp0rel 13984 relexprelg 13985 relexpaddg 14000 imasaddfnlem 16395 imasvscafn 16404 cicer 16672 joindmss 17214 meetdmss 17228 mattpostpos 20477 cnextrel 22086 perpln1 25825 perpln2 25826 relfae 30644 cnfinltrel 33571 dibvalrel 36966 dicvalrelN 36988 diclspsn 36997 dihvalrel 37082 dih1 37089 dihmeetlem4preN 37109 |
Copyright terms: Public domain | W3C validator |