![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version |
Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
relen | ⊢ Rel ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-en 8110 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
2 | 1 | relopabi 5389 | 1 ⊢ Rel ≈ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1841 Rel wrel 5259 –1-1-onto→wf1o 6036 ≈ cen 8106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-opab 4853 df-xp 5260 df-rel 5261 df-en 8110 |
This theorem is referenced by: encv 8117 isfi 8133 enssdom 8134 ener 8156 en1uniel 8181 enfixsn 8222 sbthcl 8235 xpen 8276 pwen 8286 php3 8299 f1finf1o 8340 mapfien2 8467 isnum2 8932 inffien 9047 cdaen 9158 cdaenun 9159 cdainflem 9176 cdalepw 9181 infmap2 9203 fin4i 9283 fin4en1 9294 isfin4-3 9300 enfin2i 9306 fin45 9377 axcc3 9423 engch 9613 hargch 9658 hasheni 13301 pmtrfv 18043 frgpcyg 20095 lbslcic 20353 phpreu 33675 ctbnfien 37853 |
Copyright terms: Public domain | W3C validator |