MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relelrnb Structured version   Visualization version   GIF version

Theorem relelrnb 5498
Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
relelrnb (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem relelrnb
StepHypRef Expression
1 elrng 5451 . . 3 (𝐴 ∈ ran 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
21ibi 256 . 2 (𝐴 ∈ ran 𝑅 → ∃𝑥 𝑥𝑅𝐴)
3 relelrn 5496 . . . 4 ((Rel 𝑅𝑥𝑅𝐴) → 𝐴 ∈ ran 𝑅)
43ex 397 . . 3 (Rel 𝑅 → (𝑥𝑅𝐴𝐴 ∈ ran 𝑅))
54exlimdv 2013 . 2 (Rel 𝑅 → (∃𝑥 𝑥𝑅𝐴𝐴 ∈ ran 𝑅))
62, 5impbid2 216 1 (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wex 1852  wcel 2145   class class class wbr 4787  ran crn 5251  Rel wrel 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-xp 5256  df-rel 5257  df-cnv 5258  df-dm 5260  df-rn 5261
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator