![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > releleccnv | Structured version Visualization version GIF version |
Description: Elementhood in a converse 𝑅-coset when 𝑅 is a relation. (Contributed by Peter Mazsa, 9-Dec-2018.) |
Ref | Expression |
---|---|
releleccnv | ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5613 | . . 3 ⊢ Rel ◡𝑅 | |
2 | relelec 7905 | . . 3 ⊢ (Rel ◡𝑅 → (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐵◡𝑅𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐵◡𝑅𝐴) |
4 | relbrcnvg 5614 | . 2 ⊢ (Rel 𝑅 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
5 | 3, 4 | syl5bb 272 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2103 class class class wbr 4760 ◡ccnv 5217 Rel wrel 5223 [cec 7860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-xp 5224 df-rel 5225 df-cnv 5226 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-ec 7864 |
This theorem is referenced by: releccnveq 34265 |
Copyright terms: Public domain | W3C validator |