![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
Ref | Expression |
---|---|
releldm.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
2 | releldm 5390 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
3 | 1, 2 | mpan 706 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 class class class wbr 4685 dom cdm 5143 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-dm 5153 |
This theorem is referenced by: fpwwe2lem11 9500 fpwwe2lem12 9501 fpwwe2lem13 9502 rlimpm 14275 rlimdm 14326 iserex 14431 caucvgrlem2 14449 caucvgr 14450 caurcvg2 14452 caucvg 14453 fsumcvg3 14504 cvgcmpce 14594 climcnds 14627 trirecip 14639 ledm 17271 cmetcaulem 23132 ovoliunlem1 23316 mbflimlem 23479 dvaddf 23750 dvmulf 23751 dvcof 23756 dvcnv 23785 abelthlem5 24234 emcllem6 24772 lgamgulmlem4 24803 hlimcaui 28221 brfvrcld2 38301 sumnnodd 40180 climliminf 40356 stirlinglem12 40620 fouriersw 40766 rlimdmafv 41578 |
Copyright terms: Public domain | W3C validator |