![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reldvds | Structured version Visualization version GIF version |
Description: The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
reldvds | ⊢ Rel ∥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvds 15203 | . 2 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
2 | 1 | relopabi 5401 | 1 ⊢ Rel ∥ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 Rel wrel 5271 (class class class)co 6814 · cmul 10153 ℤcz 11589 ∥ cdvds 15202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-opab 4865 df-xp 5272 df-rel 5273 df-dvds 15203 |
This theorem is referenced by: nznngen 39035 nzss 39036 nzin 39037 hashnzfz 39039 |
Copyright terms: Public domain | W3C validator |